Answer:
The correct answer is B
Explanation:
To calculate the acceleration we must use Newton's second law
F = m a
a = F / m
To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface
P = I / c absorbent surface
P = F / A
F / A = I / c
F = I A / c
The area of area of a circle is
A = π r²
We replace
F = I π r² / c
Let's calculate
F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸
F = 8.375 10⁻²³ N
Density is
ρ = m / V
m = ρ V
m = ρ (4/3 π r³)
m = 4500 (4/3 π (1 10⁻⁶)³)
m = 1,885 10⁻¹⁴ kg
Let's calculate the acceleration
a = 8.375 10⁻²³ / 1.885 10⁻¹⁴
a = 4.44 10⁻⁹ m/s² absorbent surface
The correct answer is B
Answer:
A. The waves in the water travel faster and at a higher frequency than they travel on land.
Explanation:
The main reason why human ears can hear dolphins' vocalizations while under the water but cannot hear them well on land is because water is denser than air and air particles travel faster in denser particles.
Denser particles also ensures that the frequency of the waves move faster which in turn produces a faster and louder result.
<span>Mccarthyism describes a political witchhunt, specifically refers to Sen. McCarthy's cold war era congressional commitees whose aim was to investigate and "out" or reveal individuals with communist "sympathies".</span>
Helium has an atomic mass of 4.00 atomic mass units.
Answer:
The first harmonic is: 250Hz, second harmonic 500Hz, third harmonic 750Hz.
Explanation:
Use the frequency f, speed v, and wavelentgh L relationship:

We are given the speed v=400 m/s. The base wavelength on a string of length 80cm is twice the length of the string (a "half wave" along the full length of the string), so:

The fundamental frequency (first harmonic) is 250 Hz
The second harmonic is produced by one full wave across the string (adding one node in the middle), so L=80cm in this case, therefore the second harmonic frequency is: f2 = 2*250=500Hz
the third harmonic add another node (and a half wave) to the pattern and the wavelength will be 2/3 of 80cm, so f3=3*250Hz = 750Hz