1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
9

Sinx•Tanx•Cotx•Cscx =

Mathematics
1 answer:
nekit [7.7K]3 years ago
8 0

Answer:

the answer of this question is " 1 "

Step-by-step explanation:

as

tanx = sinx/cosx

cotx = cosx/sinx

cscx = 1/sinx

after putting them all in the given equation

sinx.(sinx/cosx).(cosx/sinx).(1/sinx)

they all are canceled as all are being multiplied with their reciprocals so answer is " 1 "

You might be interested in
The mean height of women in a country (ages 20-29) is 63.9 inches. A random sample of 65 women in this age group is selected. Wh
anzhelika [568]

Answer: The mean height of women in a country ages 20 29

The mean height of women in a country (ages 20-29) is 63.7 inches.

4 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Here are my points idc anymore
RSB [31]

Answer:

Thanks for the free points

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Construct a quadratic polynomial whose zeroes are negatives of the zeroes of the
sp2606 [1]

Given:

The given quadratic polynomial is :

x^2-x-12

To find:

The quadratic polynomial whose zeroes are negatives of the zeroes of the given polynomial.

Solution:

We have,

x^2-x-12

Equate the polynomial with 0 to find the zeroes.

x^2-x-12=0

Splitting the middle term, we get

x^2-4x+3x-12=0

x(x-4)+3(x-4)=0

(x+3)(x-4)=0

x=-3,4

The zeroes of the given polynomial are -3 and 4.

The zeroes of a quadratic polynomial are negatives of the zeroes of the given polynomial. So, the zeroes of the required polynomial are 3 and -4.

A quadratic polynomial is defined as:

x^2-(\text{Sum of zeroes})x+\text{Product of zeroes}

x^2-(3+(-4))x+(3)(-4)

x^2-(-1)x+(-12)

x^2+x-12

Therefore, the required polynomial is x^2+x-12.

4 0
3 years ago
Please answer ASAP!!!
drek231 [11]
Hi there!
------------------------
question - A 36-foot flagpole casts a 10 3/4 foot shadow, while the hospital nearby casts a 37 5/8 foot shadow. Find the height of the hospital
------------------------------------------------------------------------------------------------------------
if you correctly work this out the answer is:
The height of the hospital is 35 3/4 feet
--------------------------------------------------------------
Have a nice day!
6 0
3 years ago
Other questions:
  • A backyard pool has a concrete walkway around it that is 3 feet wide on all sides. The total area of the pool and the walkway is
    10·1 answer
  • Find the interest rate that generated $250 in interest for an investment of $3500 after 18 months
    7·1 answer
  • Ten balls numbered from 1 to 10 are placed in a bag.
    6·1 answer
  • Solve for x. Simplify completely.<br> x^2+4x+4=8
    11·1 answer
  • A shopkeper declares a 20% discount on his goods and sells it at a profit of 25%. What is the cost price of the goods if the mar
    7·1 answer
  • -3n-4n-17=25 identfy you answer please
    10·1 answer
  • The absolute value function g(x) = |x + 2| + 1 is translated 4 units right and 5 units up to become g'(x). The quadratic functio
    6·1 answer
  • HELP PLEASE ME <br> I WILL GIVE BRAINLIEST
    12·1 answer
  • What is the value of x? Show your work in arriving at your answer.
    11·1 answer
  • Can someone pls tell me if this is right? if its not then what is the right answer?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!