Answer:
Due to the accumulation of static charges/due to static electricity
Explanation:
The given reaction will be as follows.

So, equilibrium constant for this equation will be as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
As it is given that concentration of all the species is 2.4. Therefore, calculate the value of equilibrium constant as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
= 
= 0.173
Thus, we can conclude that equilibrium constant for the given reaction is 0.173.
Answer:
Yes, it will.
Explanation:
The friction of the surface will tug at the book and lower it's velocity, causing it to slow down.
Answer:
Explanation:
so u can work out the amount of moles in FeO3 by doing mr of fe3o3 is 55.8*3+16*3=215.4
moles= mass/mr so you do 15.5g/215.4=0.0719 moles
then using 1 to 1 ratio so O2 moles is 0.0719
then use the equation mass=mole*mr
so 0.0719*16=1.15g
hope this make sense :)