Answer: 2. cannot be an element.
Explanation:
Element is a pure substance which is composed of atoms of similar elements.It can not be decomposed into simpler constituents using chemical reactions.Example: Copper 
Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.It can be decomposed into simpler constituents using chemical reactions. Example: methane 

Thus as it can be decomposed into its constituent elements, it is a compound.
Mixture is a substance which has two or more components which do not combine chemically and do not have any fixed ratio in which they are present.
Thus methane cannot be an element.
The answer is B. This is because Sodium has 1 valence electron and Fluorine has 7 valence electrons. All elements want 8 valence electrons so they may be stale, like the noble gases are. Hope this helps.
Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin
Answer:
Robert Boyle
Explanation:
Robert Boyle was an Irish chemist and is famously referred to as the first modern chemist. He was born on the 25th of January, 1627 in Lismore, Ireland and died on the 31st, December 1691, London, United Kingdom.
Robert Boyle was the first to determine the relationship between the pressure and volume of a gas.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Where;
V1 and V2 represents the initial and final volumes respectively.
T1 and T2 represents the initial and final temperatures respectively.
Answer:
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Explanation:
2HBr(aq)+Ba(OH)2(aq)⟶2H2O(l)+BaBr2(aq)
We break the compounds into ions. Only compounds in the aqueous form can be turned into ions.
The ionic equation is given as;
2H⁺(aq) + 2Br⁻(aq) + Ba²⁺(aq) + 2OH⁻(aq) --> 2H2O(l) + Ba²⁺(aq) + 2Br⁻(aq)
Upon eliminating the spectator ions; The net equation is given as;
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)