Answer:
Example
0.5 mol of sodium hydroxide is dissolved in 2 dm3 of water. Calculate the concentration of the sodium hydroxide solution formed.
Concentration =
Concentration = 0.25 mol/dm3
Volume units
Volumes used in concentration calculations must be in dm3, not in cm3. It is useful to know that 1 dm3 = 1000 cm3. This means:
divide by 1000 to convert from cm3 to dm3
multiply by 1000 to convert from dm3 to cm3
For example, 250 cm3 is 0.25 dm3 (250 ÷ 1000). It is often easiest to convert from cm3 to dm3 before continuing with a concentration calculation.
Question
100 cm3 of dilute hydrochloric acid contains 0.02 mol of dissolved hydrogen chloride. Calculate the concentration of the acid in mol/dm3.
Reveal answer
Converting between units
The relative formula mass of the solute is used to convert between mol/dm3 and g/dm3:
to convert from mol/dm3 to g/dm3, multiply by the relative formula mass
to convert from g/dm3 to mol/dm3, divide by the relative formula mass
Remember: the molar mass is the Ar or Mr in grams per mol.
Example
Calculate the concentration of 0.1 mol/dm3 sodium hydroxide solution in g/dm3. (Mr of NaOH = 40)
Concentration = 0.1 × 40
= 4 g/dm3
Answer:
None of these are correct, because there is no way to balance this equation, but I hope these steps help you figure out your answer.
Explanation:
Count out the single amounts of elements you have on both sides of the equation. To be balanced, you need to have the exact same for each element.
Before balanced Left side.
Cl-2
O-8
H-2
Before balanced right side.
H-1
Cl-1
O-3
That means we need to increase Hydrogen, Chlorine and Oxygen on the right for sure and see how that affects the equation. You can keep adding the Coefficients until the # of elements begin to match on each side.
(I tried to balance this equation, it doesn't work, there is too much on the reactants side for what the product is.)
Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K
Used mainly in the context of Geography a Constructive force is involved in making new land while a Destructive force breaks the land. As they are carrying opposite functions to one another they are considered as competing forces.