Answer:
1) No shift
2) No shift
3) Leftward shift
4)Rightward sifht
Explanation:
1) 2) Adding N or Removing N in the equilibrium will produce No shift, because of its solid state, the N is not contemplated in the equilibrium equation:
3) Increasing the volume produces a decrase in the preassure due to the expansion of the gases. This will cause a leftward shift, because the system will try to increase the moles of gas and in consecuence of this, also increase the preassure.
4) Decreasing the volume has the opposite effect of the item 3): the preassure will increase and the system will consume moles of gas to decrease it, producing a rightward shift.
Answer:
0.733 mol.
Explanation:
- From the balanced equation:
<em>2Fe₂O₃ + C → Fe + 3CO₂,</em>
It is clear that 1.0 moles of Fe₂O₃ react with 1.0 mole of C to produce 1.0 mole of Fe and 3.0 moles of CO₂.
- Since Fe₂O₃ is in excess, C will be the limiting reactant.
<u><em>Using cross multiplication:</em></u>
1.0 mole of C produces → 3.0 moles of CO₂, from the stichiometry.
??? mole of C produces → 2.2 moles of CO₂.
∴ The no. of moles of C needed to produce 2.2 moles of CO₂ = (1.0 mole of C) (2.2 mole of CO₂) / (3.0 mole of CO₂) = 0.733 mol.
8 moles I think I’m not sure
When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>
I think it’s c bc it makes more sense