Answer:
The molarity of the solution is 245, 2M.
Explanation:
We calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case KCl03) in 1000ml of solution (1 liter):
0,25 L solution----- 61,3 moles of KCl03
1 L solution----x= (1 L solution x 61,3 moles of KCl03)/0,25 L solution
x=245, 2 moles of KCl03 --> <em>The molarity of the solution is 245, 2M</em>
<em></em>
Is by turning a few seconds before
Answer:
Ionul de hidroniu este un factor important atunci când avem de-a face cu reacții chimice care apar în soluții apoase. Concentrația sa în raport cu hidroxidul este o măsură directă a pH-ului unei soluții. Se poate forma atunci când un acid este prezent în apă sau pur și simplu în apă pură. Formula chimică este H3O +
Explanation:
The hydronium ion is an important factor when dealing with chemical reactions that occur in aqueous solutions. Its concentration relative to hydroxide is a direct measure of the pH of a solution. It can be formed when an acid is present in water or simply in pure water. It's chemical formula is H3O+
marke me as brainliest please
I think it's the Pentium up
115
<span>he's in the 15th column, 7th period </span><span />
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.