2 liters may be 1.5 to 1.9 rounded up to 2 or 2.1 or 2.4 rounded down to 2.
2 - 1.5 = 0.5
percent error = (absolute error / quantity) * 100
percent error = 0.5/2 * 100% = 0.25 * 100% = 25%
Choice C. 25%.
Energy can be conserved by efficient energy use.
Answer: Option A
<u>Explanation:</u>
Energy can be transferred from one form to another, but it cannot be destroyed or created. So it can be conserved if efficiently used. Thus efficient usage of energy lead to conservation of energy. Due to conservation of energy, the forces can be renewable and non-renewable.
So, we should know how the input energy can be completely converted to another form of energy leading to efficient usage of energy without any loss. As if there is no loss, input energy will be equal to output energy leading to 100% efficiency.
Answer:
n l m
����������������������������������
1 0 0 1s 1 2 2
����������������������������������
2 0 0 2s 1 2
2 1 1,0,-1 2p 3 6 8
����������������������������������
3 0 0 3s 1 2
3 1 1,0,-1 3p 3 6
3 2 2,1,0,-1,-2 3d 5 10 18
����������������������������������
4 0 0 4s 1 2
4 1 1,0,-1 4p 3 6
4 2 2,1,0,-1,-2 4d 5 10
4 3 3,2,1,0,-1,-2,-3 4f 7 14 32
Explanation:
The correct answer is Cl.
Chlorine is a substance that's employed in industry and is present in a number of household goods. There are times when chlorine takes the form of toxic gas. Chlorine gas can be converted into a liquid by applying pressure and cooling so that it can be transported and stored. The term "oxidation number" refers to the number of electrons that an element's atom either loses or gains during the production of a compound. The charge that an atom seems to have when forming ionic connections with other heteroatoms is used to define an atom's oxidation number. Even if it develops a covalent bond, an atom with a higher electronegativity is given a negative oxidation state.
Learn more about oxidation numbers here:-
brainly.com/question/10079361
#SPJ4
Answer:
Explanation:
A. White blood cells have many lysosomes because they need to produce a lot of glucose and oxygen.
Lysosomes are found in all animal cells, but are most numerous in disease-fighting cells, such as white blood cells. This is because white blood cells must digest more material than most other types of cells in their quest to battle bacteria, viruses, and other foreign intruders.