Answer:
<h2>
50+50i</h2>
Step-by-step explanation:
Given the expression (2 + i)(3 - i)(1 + 2i)(1 - i)(3 + i), we are to take the product of all the complex values. We must note that i² = -1.
Rearranging the expression [(3 - i)(3 + i)] [(2 + i)(1 - i)](1 + 2i)
On expansion
(3 - i)(3 + i)
= 9+3i-3i-i²
= 9-(-1)
= 9+1
(3 - i)(3 + i) = 10
For the expression (2 + i)(1 - i), we have;
(2 + i)(1 - i)
= 2-2i+i-i²
= 2-i+1
= 3-i
Multiplying 3-i with the last expression (1 + 2i)
(2 + i)(1 - i)(1 + 2i)
= (3-i)(1+2i)
= 3+6i-i-2i²
= 3+5i-2(-1)
= 3+5i+2
= 5+5i
Finally, [(3 - i)(3 + i)] [(2 + i)(1 - i)(1 + 2i)]
= 10(5+5i)
= 50+50i
Hence, (3 - i)(3 + i)(2 + i)(1 - i)(1 + 2i) is equivalent to 50+50i
Well if you make 3/4 and 1/16 similar fractions by making 3/4 into 12/16 you get the answer in the numerator which is 12 tbsp of butter
.83 is greater .038 is in the thousands place and .83 is in the hundreds hope this Helped :D
Assume N students
Student 1 can get (n-1) papers
Student 2 can get (n-1) papers
Student 3 can get (n-1) papers
etc
Student N can get (n-1) papers
So for N students you can have N(n-1)