Use the equation q=ncΔT.
q= heat absorbed our released (in this case 1004J)
n= number of moles of sample ( in this case 2.08 mol)
c=molar heat capacity
ΔT=change in temperature (in this case 20°C)
You have to rewrite the equation for c.
c=q/nΔT
c=1004J/(2.08mol x 20°C)
c=24.1 J/mol°C
I hope this helps
Voltage difference is the push that causes charges to flow from high to low areas.
The three of them have the same amount of electrons, so we can’t determine the right one on that ground. As you might know, Pauli said that electrons are always in the position of the lowest energy. So the first situation is impossible because there is a free place available that takes less energy. Then the 3rd situation is nor possible because if one electron has a different spin than the others, there is a magnetic obstruction that be prevented if the spin changes. This means that the second situation is the right one.
Hello!
If a reaction occurs when a piece of metal is placed in a solution, you can conclude that the solution is <span>probably acidic because bases rarely react with metals.
Strong Acids, like HCl, react with metals to produce salts and release gaseous hydrogen (H</span>₂) which is evidenced by the generation of bubbles in the solution. The general chemical equation for this kind of reactions for a metal M and an acid HA is:
2M(s) + 2HA(aq) → 2MA(aq) + H₂(g)
Have a nice day!
<span>
</span>