The FREQUENCY of light remains unchanged once it leaves the source.
Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.
few plants
Explanation:
Arid and polar regions of the world typically have few plant species. The plant species in such environment are called xerophytes. They are plants that can live in an area with little to no precipitation.
- Arid regions of the world are about the most driest in the world with very high diurnal temperature range.
- Polar regions are frigid and cold all year round.
- Both arid and polar regions have little to no precipitation all year round.
- They have poor soils to support plant growth.
- This is why they both have few plants.
Learn more:
Temperate and tropical climate brainly.com/question/10856870
#learnwithBrainly
Answer:
The current in the wire is 31.96 A.
Explanation:
The current in the wire can be calculated as follows:

<u>Where</u>:
q: is the electric charge transferred through the surface
t: is the time
The charge, q, is:

<u>Where</u>:
n: is the number of electrons = 7.93x10²⁰
e: is the electron's charge = 1.6x10⁻¹⁹ C

Hence, the current in the wire is:

Therefore, the current in the wire is 31.96 A.
I hope it helps you!
Explanation:
It is given that,
Wavelength, 
Slit width, 
Order, m = 2
If the diffracted light projects onto a screen at distance 1.50 m, L = 1.5 m
For the diffraction of light,


y = 0.0037 m
So, the distance from the center of the diffraction pattern to the dark band is 0.0037 meters. Hence, this is the required solution.