The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
The specific heat capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
- Q = quantity of heat absorbed (J)
- c = specific heat capacity (4.18 J/g°C)
- m = mass of substance
- ∆T = change in temperature (°C)
According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:
2510 = 158 × c × (61°C - 32°C)
2510 = 4582c
c = 2510 ÷ 4582
c = 0.5478 J/g°C
Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.
Learn more about specific heat capacity at: brainly.com/question/2530523
pitch goes up on approach ... Doppler effect
Answer:
15 protons and 18 electrons
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Element Number
- Neutral Atoms
- Ions
Explanation:
We are given the element P. P is 15 on the Periodic Table, meaning it has 15 protons and 15 electrons (all elements are in neutral form).
P³⁻ ion means the element now has a negative charge of 3. We know protons have a positive charge and electrons have a negative charge. 3- means we will have more electrons than protons.
Therefore, P³⁻ would have 15 protons and <em>18</em> electrons:
15 (+) + 18 (-) = 3 (-)
Momentum of the object can be calculated by multiplying the mass of the object and the velocity of the moving object. In this case, the starting situation should be the object should be moving, else there is no velocity and thus momentum is equal to zero .Answer is C