The minimum force required to lift the box at constant velocity is determined as 274.4 N.
<h3>
Minimum force required</h3>
The minimum force required to lift the box at constant velocity is the tension in one of the pulleys, and the magnitude is calculated as follows;
2T = mg
where;
- m is mass of the box
- T is the minimum force required
2T = mg
T = mg/2
T = (56 x 9.8)/2
T = 274.4 N
Learn more about minimum force here: https://brainly.in/question/47873510
#SPJ1
2 is the answer have a nice day <3
Answer:
D. The cart is moving at a constant speed or velocity
Explanation:
Equilibrium is a state of body in which it is either at rest or moves with uniform velocity. The sum of forces acting on such a body is always zero and the sum of all the torques acting on it is also zero.
There are two types of equilibrium as follows:
Static Equilibrium: When a body is at rest it is said to be in static equilibrium.
Dynamic Equilibrium: When a body is moving with constant velocity, then it is said to be in dynamic equilibrium.
Hence, the correct option here will be:
<u>D. The cart is moving at a constant speed or velocity</u>