Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
The term that best describes how many waves that pass? It's frequency because how many waves are passed by a given point or time is called the waves frequency. I hope this helped you out on your assignment.
Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m
The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
Answer:
The velocity of the motorboat after 6s is 24 m/s.
Explanation:
Given;
acceleration of the motorboat, a = 4.0 m/s²
initial velocity of the motorboat, u = 0
time of motion of the motorboat = 6s
Apply the following kinematic equation to determine the velocity of the motorboat after 6 ;
v = u + at
v = 0 + (4 x 6)
v = 24 m/s
Therefore, the velocity of the motorboat after 6s is 24 m/s.