The sea level would rise because the snow and glaciers are water
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as

Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as

=> 
Here the potential energy of the mass is mathematically represented as
![PE = \frac{1}{ 2} * k * [ x ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20x%20%5D%5E2)
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is

So
![PE = \frac{1}{ 2} * k * [ \frac{A}{2} ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20%5Cfrac%7BA%7D%7B2%7D%20%20%5D%5E2)
So
![KE = \frac{1}{2} * k * A^2 - \frac{1}{2} * k * [\frac{A}{2} ]^2](https://tex.z-dn.net/?f=KE%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20A%5E2%20-%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20%5B%5Cfrac%7BA%7D%7B2%7D%20%5D%5E2)
=> 
=> 
So the ratio of
is mathematically represented as

=>
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer:
36.87 km/h
Explanation:
Convert all the units in SI system
1 mile = 1609.34 m
d1 = 6 mi = 9656.04 m
t1 = 15 min = 15 x 60 = 900 s
d2 = 3 mi = 4828.02 m
t2 = 10 min = 10 x 60 = 600 s
d3 = 1 mi = 1609.34 m
t3 = 2 min = 2 x 60 = 120 s
d4 = 0.5 mi = 804.67 m
t4 = 0.5 min = 0.5 x 60 = 30 s
Total distance, d = d1 + d2 + d3 + d4
d = 9656.04 + 4828.02 + 1609.34 + 804.67 = 16898.07 m = 16.898 km
total time, t = t1 + t2 + t3 + t4
t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h
The ratio of the total distance covered to the total time taken is called average speed.
Average speed = 16.898 / 0.4583 = 36.87 km/h
If object is not accelerating, the sum of all forces on the object will be equal to ZERO...