1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
12

Add or subtract as indicated:

Physics
1 answer:
zzz [600]3 years ago
7 0
D. 8.12×10^7g - 6.20×10^6g
You might be interested in
If al snow and glaiers melted, would the sea level rise or fall
Kobotan [32]
The sea level would rise because the snow and glaciers are water 

4 0
3 years ago
When the displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position, what fraction of the
KonstantinChe [14]

Answer:

The ratio is  KE : TM  =  0.75

Explanation:

from the question we are told that

  The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position

Generally the total mechanical  energy of the mass is mathematically represented as

        TM  =  \frac{1}{2}  *  k  *  A^2

Here  k is the spring constant  ,  A is the total displacement of the  the mass  from maximum  compression to maximum extension of the spring

Generally this total mechanical energy is mathematically represented as

        TM  =  KE  + PE

=>     KE = TM  - PE

Here the potential  energy of the mass is mathematically represented as

     PE   = \frac{1}{ 2}  *  k *  [ x ]^2

Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is  

      x = \frac{A}{2}

So

     PE   = \frac{1}{ 2}  *  k *  [ \frac{A}{2}  ]^2

So

      KE =  \frac{1}{2}  *  k  *  A^2 - \frac{1}{2}  *  k  *  [\frac{A}{2} ]^2

=>    KE =  \frac{1}{2}  *  k  *  A^2 - \frac{1}{8}  *  k  *  A ^2

=>    KE =  0.375  *  k  *  A^2

So the ratio of  KE :  TM is  mathematically represented as

       \frac{KE}{TM} =  \frac{0.375  k A^2 }{0.5 k A^2}

=>    \frac{KE}{TM} = 0.75

3 0
3 years ago
A ball is launched with initial speed v from ground level up a frictionless slope (This means the ball slides up the slope witho
amid [387]

Answer:

hmax = 1/2 · v²/g

Explanation:

Hi there!

Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.

KE = PE

Where KE is the initial kinetic energy and PE is the final potential energy.

The kinetic energy of the ball is calculated as follows:

KE = 1/2 · m · v²

Where:

m = mass of the ball

v = velocity.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the ball.

g = acceleration due to gravity (known value: 9.81 m/s²).

h = height.

At  the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:

PE = KE

m · g · hmax = 1/2 · m · v²

Solving  for hmax:

hmax = 1/2 · v² / g

4 0
3 years ago
It takes 15 min to drive 6.0 mi in a straight line to the local hospital. It takes 10 min to go the last 3.0 mi, 2.0 min to go t
Gala2k [10]

Answer:

36.87 km/h

Explanation:

Convert all the units in SI system

1 mile = 1609.34 m

d1 = 6 mi = 9656.04 m

t1 = 15 min = 15 x 60 = 900 s

d2 = 3 mi = 4828.02 m

t2 = 10 min = 10 x 60 = 600 s

d3 = 1 mi = 1609.34 m

t3 = 2 min = 2 x 60 = 120 s

d4 = 0.5 mi = 804.67 m

t4 = 0.5 min = 0.5 x 60 = 30 s

Total distance, d = d1 + d2 + d3 + d4

d = 9656.04 + 4828.02 +  1609.34 + 804.67 = 16898.07 m = 16.898 km

total time, t = t1 + t2 + t3 + t4

t = 900 + 600 + 120 + 30 = 1650 s = 0.4583 h

The ratio of the total distance covered to the total time taken is called average speed.

Average speed = 16.898 / 0.4583 = 36.87 km/h

6 0
3 years ago
If an object is not accelerating what can you determine about the sum of all the forces on the object
xxTIMURxx [149]
If object is not accelerating, the sum of all forces on the object will be equal to ZERO...
8 0
3 years ago
Other questions:
  • Carlita and Max were bowling after school. Carlita was getting frustrated because of the small number of pins she kept knocking
    5·1 answer
  • A force of 334 N has a work on an object of 823 J, what is the displacement that was made
    14·1 answer
  • Which phrases describe all the outer planets’ motion? Select two options.
    12·2 answers
  • How much physical activity should an adult have each week?
    11·1 answer
  • Liquid pressure does not depend on
    6·1 answer
  • T or F-Climate is directly related to the amount of energy from the sun or solar energy that an area receives
    14·1 answer
  • Certain gases in the atmosphere – water vapor, carbon dioxide, methane and nitrous oxIde – help maintain the Earth’s temperature
    13·1 answer
  • A 30kg uniform solid cylinder has a radius of 0.18m. if the cylinder accelerates at 0.023 rad/s^2 as it rotates about an axis th
    10·1 answer
  • How many different atoms are there in a compound? ​
    13·2 answers
  • When a pulse travels on a taut string, does it always invert upon reflection? Explain.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!