1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
11

NH4+ (aq) + NO2- (aq) → N2 (g) + H2O (l) Experiment [NH4+]i [NO2-]i Initial rate (M/s) 1 0.24 0.10 7.2 x 10-4 2 0.12 0.10 3.6 x

10-4 3 0.12 0.15 5.4 x 10-4 4 0.12 0.12 4.3 x 10-4 First determine the rate law and rate constant. Under the same initial conditions as in Experiment 4, calculate [NH4+] at 274 seconds after the start of the reaction. In this experiment, both reactants are present at the same initial concentration. The units should be M, and should be calculated to three significant figures.
Chemistry
1 answer:
Yuki888 [10]3 years ago
5 0

Answer :

The rate law becomes:

\text{Rate}=k[NH_4^+][NO_2^-]

The value of the rate constant 'k' for this reaction is 3.0\times 10^{-2}M^{-1}s^{-1}

The concentration of [NH_4^+] at 274 seconds after the start of the reaction is 0.0604 M

Explanation :

Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.

For the given chemical equation:

NH_4^+(aq)+NO_2^-(aq)\rightarrow N_2(g)+H_2O(l)

Rate law expression for the reaction:

\text{Rate}=k[NH_4^+]^a[NO_2^-]^b

where,

a = order with respect to NH_4^+

b = order with respect to NO_2^-

Expression for rate law for first observation:

7.2\times 10^{-4}=k(0.24)^a(0.10)^b ....(1)

Expression for rate law for second observation:

3.6\times 10^{-4}=k(0.12)^a(0.10)^b ....(2)

Expression for rate law for third observation:

5.4\times 10^{-4}=k(0.12)^a(0.15)^b ....(3)

Expression for rate law for fourth observation:

4.3\times 10^{-4}=k(0.12)^a(0.12)^b ....(4)

Dividing 2 from 1, we get:

\frac{7.2\times 10^{-4}}{3.6\times 10^{-4}}=\frac{k(0.24)^a(0.10)^b}{k(0.12)^a(0.10)^b}\\\\2=2^a\\a=1

Dividing 2 from 3, we get:

\frac{5.4\times 10^{-4}}{3.6\times 10^{-4}}=\frac{k(0.12)^a(0.15)^b}{k(0.12)^a(0.10)^b}\\\\1.5=1.5^b\\b=1

Thus, the rate law becomes:

\text{Rate}=k[NH_4^+]^1[NO_2^-]^1

\text{Rate}=k[NH_4^+][NO_2^-]

Now, calculating the value of 'k' by using any expression.

7.2\times 10^{-4}=k(0.24)(0.10)

k=3.0\times 10^{-2}M^{-1}s^{-1}

Hence, the value of the rate constant 'k' for this reaction is 3.0\times 10^{-2}M^{-1}s^{-1}

Now we have to calculate the [NH_4^+] at 274 seconds after the start of the reaction.

For experiment 4 , the initial concentration of [NH_4^+] and [NO_2^-] are same  and the reaction is 1st order for both.

So, it can be considered as a 2nd order reaction.

The expression for second order reaction is:

kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}

where,

k = rate constant = 3.0\times 10^{-2}M^{-1}s^{-1}

t = time = 274 s

[A_t] = final concentration = ?

[A_o] = initial concentration = 0.12 M

Now put all the given values in the above expression, we get:

3.0\times 10^{-2}\times 274=\frac{1}{A_t}-\frac{1}{0.12}

[A_t]=0.0604M

Therefore, the concentration of [NH_4^+] at 274 seconds after the start of the reaction is 0.0604 M

You might be interested in
Can someone please help me
Lilit [14]
It is A. Barium

Explanation: I did that already
3 0
3 years ago
What is the concentration of Htions at a pH = 11?
Lostsunrise [7]
Answer:
a) 1 x 10^-11 mol/L
b) 1 x 10^-6 mol/L
c) 1 x 10^-5 fewer H+ ions

Explanation

pH stands for Power of Hydrogen, the more acidic a substance is, the more H+ ions it has rendering the substance acidic. a pH of 1 means the concentration of H+ ions is 1 x 10^-1. A pH of 7 means the concentration of H+ ions is 1 x 10^-7 and so on.

10^-11 has 10^-5 more H+ ions than 10^-6

Hope this helps :)
5 0
3 years ago
Basic molecules contain more ...
notsponge [240]

Answer:

Option C. hydroxide ions (OH-).

Explanation:

A base is a substance which dissolves in water to produce hydroxide ion (OH-) as the only negative ion. It therefore means that a base contains more hydroxide ions (OH-).

5 0
3 years ago
Consider a voltaic cell where the anode half-reaction is Zn(s) → Zn2+(aq) + 2 e− and the cathode half-reaction is Sn2+(aq) + 2 e
notsponge [240]

<u>Answer:</u> The concentration of Sn^{2+} in the cell is 9.0\times 10^{-3}M

<u>Explanation:</u>

We are given:

<u>Oxidation half reaction:</u>  Zn(s)\rightarrow Zn^{2+}(aq.)+2e^-   E^o_{Zn^{2+}/Zn}=-0.76V

<u>Reduction half reaction:</u>  Sn^{2+}(aq.)+2e^-\rightarrow Sn(s)   E^o_{Sn^{2+}/Sn}=-0.136V

The substance having highest positive E^o potential will always get reduced and will undergo reduction reaction. Here, fluorine will undergo reduction reaction will get reduced.

Here, tin will undergo reduction reaction and will get reduced.

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the E^o_{cell} of the reaction, we use the equation:

E^o_{cell}=E^o_{cathode}-E^o_{anode}

Putting values in above equation, we get:

E^o_{cell}=-0.136-(-0.76)=0.624V

To calculate the EMF of the cell, we use the Nernst equation, which is:

E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{[Mn^{2+}]}{[Cu^{2+}]}

where,

E_{cell} = electrode potential of the cell = 0.660 V

E^o_{cell} = standard electrode potential of the cell = +0.624 V

n = number of electrons exchanged = 2

[Zn^{2+}]=2.5\times 10^{-3}M

[Sn^{2+}] = ?

Putting values in above equation, we get:

0.660=0.624-\frac{0.059}{2}\times \log(\frac{2.5\times 10^{-3}}{[Sn^{2+}})

[Sn^{2+}]=9.0\times 10^{-3}M

Hence, the concentration of Sn^{2+} ions is 9.0\times 10^{-3}M

3 0
3 years ago
"You measure 48.9 mL of a solution of sulfuric acid with an unknown concentration, and carefully titrate this solution using a 1
Blizzard [7]

Answer:

C= 0.532M

Explanation:

The equation of reaction is

H2SO4 + 2KOH = K2SO4+ H2O

nA= 1, nB= 2, CA= ?, VA= 48.9ml, CB= 1.5M, VB= 34.7ml

Applying

CAVA/CBVB = nA/nB

(CA× 48.9)/(1.5×34.7)= 1/2

Simplify

CA= 0.532M

6 0
3 years ago
Other questions:
  • What element is represented by the electron configuration [ar]4s23d8?
    14·1 answer
  • Explain why the reaction is classified as an addition reaction
    14·1 answer
  • 1.You have three elements, A, B, and C, with the following electronegativity values:
    7·1 answer
  • A substance has a mass of 50 g and a density of 2.5 g/mL. What is its volume?​
    7·1 answer
  • Describe why corrosion is a natural process
    12·1 answer
  • Which of the following is accurate about the octet rule? -please explain your reasoning for answer
    8·1 answer
  • 20 points
    11·1 answer
  • Calculate the amount of mole of gas which occupies 250cm at S.T.P ​
    15·1 answer
  • Why is the Universal Law of Gravitation is a scientific Law and not a theory?
    13·1 answer
  • How many electron regions is in a nitrate ion using molecule geomerty
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!