Answer:
22.9 Liters CO(g) needed
Explanation:
2CO(g) + O₂(g) => 2CO₂(g)
? Liters 32.65g
= 32.65g/32g/mol
= 1.02 moles O₂
Rxn ratio for CO to O₂ = 2 mole CO(g) to 1 mole O₂(g)
∴moles CO(g) needed = 2 x 1.02 moles CO(g) = 2.04 moles CO(g)
Conditions of standard equation* is STP (0°C & 1atm) => 1 mole any gas occupies 22.4 Liters.
∴Volume of CO(g) = 1.02mole x 22.4Liters/mole = 22.9 Liters CO(g) needed
___________________
*Standard Equation => molecular rxn balanced to smallest whole number ratio coefficients is assumed to be at STP conditions (0°C & 1atm).
Explanation:
A mixture in which there is uniform distribution of solute particles into the solvent is known as a homogeneous mixture.
For example, sugar dissolved in water is a homogeneous mixture.
On the other hand, a mixture in which there is uneven distribution of solute particles into the solvent is known as a heterogeneous mixture.
For example, sand present in water is a heterogeneous mixture.
Comment on given situations will be as follows.
(a) Air in a closed bottle - It is a homogeneous mixture because there will be even distribution of other gases that are present in air.
(b) Air over New York City - It is a heterogeneous mixture because there will be presence of some dust particles, fog or smoke into the air. Distribution of all these particles will be uneven. This will make air over New York City heterogeneous in nature.
Br2 experiences dipole-dipole interactions. ICl experiences dipole-dipole interactions. Br2 forms hydrogen bonds. ICl experiences induced dipole-induced dipole interactions.