Explanation:
Let us calculate the work done in lifting an object of mass m through a height h, such as in Figure 1. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force
Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.
Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement
Detergents are special, powerful cleansers that can break up dirt, oils, and grease in clothing or on dishes.
Cleaning solvents are used to remove oil, grease, solder flux, and other contaminants.
Acid cleaners are generally used to remove mineral deposits and are useful for descaling dishwashers or removing rust from restroom facilities.
Abrasive uses
* Buffing.
* Honing.
* Drilling.
* Grinding.
* Sanding.
* Polishing.
* Cutting.
* Sharpening.
Mass is indirectly proportional to acceleration, so, lighter the object greater would be it's acceleration...
A) 0.10 kg is lightest among them, so it's your answer