Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
<h3><u>Effects of the earths orbit around the sun:</u></h3>
The earth moves around the sun in an elliptical orbit, Johannes Kepler, a "German mathematician, and astronomer" described this elliptical orbit first. The orbit is close to being a circle but not a circle. Earth orbiting the sun mainly effects on seasons on earth.
Earth's four seasons are determined when Earth is tilted 23.4 degrees on the vertical axis, which is called as “axial tilt”. When a "southern hemisphere is tilted towards the sun", it experiences summer and northern hemisphere experiences winter, exactly opposite happens when northern hemisphere tilts towards Sun and this climate change goes on in all countries.
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
Answer:
The gravitational force changing velocity is

Explanation:
The expression for the gravitational force is

Differentiate the above equation

The velocity is the distance in at time so



According to the research, the correct option is c. Protons and neutrons are subatomic particles can be located within the nucleus of an atom.
<h3>What is an atom?</h3>
It is the minimum unit of a substance, which makes up all common matter and is made up of a nucleus with protons and neutrons and several orbital electrons, the number of which varies according to the chemical element.
In this sense, protons are subatomic particles that have a positive energetic charge, while neutrons have no charge.
Therefore, we can conclude that according to the research, the correct option is c. Protons and neutrons are subatomic particles can be located within the nucleus of an atom.
Learn more about an atom here: brainly.com/question/11467887
#SPJ1