Using Newton's second law of motion:
F=ma ; [ F = force (N: kgm/s^2);m= mass (kg); a = acceleration (m/s^2)
Given: Find: Formula: Solve for m:
F: 2500N mass:? F=ma Eq.1 m=F/a Eq. 2
a= 200m/s^2
Solution:
Using Eq.2
m= (2500 kgm/s^2)/ (200m/s^2) = 12.5 kg
The radius, r, of the child from the center of the wheel is
r = 1.3 m
The wheel makes one revolution in 4.2 s. Its angular velocity is
ω = (2π rad)/(4.2 s) = 1.496 rad/s
The linear speed of the child is the tangential velocity, given by
v = rω
= (1.3 m)*(1.496 rad/s)
= 1.945 m/s
Answer: 1.95 m/s (nearest hundredth)
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:

Explanation:
We must use conservation of linear momentum before and after the collision, 
Before the collision we have:

where these are the masses are initial velocities of both players.
After the collision we have:

since they clong together, acting as one body.
This means we have:

Or:

Which for our values is:

Answer:
False
Explanation:
The given statement "Two objects must be in contact for them to exert a force on each other" is not true as there are many types of forces that doesn't require being in contact for exerting a force.
One such example is the gravitational force acting between two bodies. Gravitational force is the force of pull with which a body pulls another body without being in contact.
For two bodies of masses 'M' and 'm' separated at a distance of 'R', the gravitational force is given as:

The gravitational force acts always act between bodies that have mass. The bodies are not in contact yet experience force.
Therefore, the given statement is false.