Answer:
The change on the second particle is
.
Explanation:
The period of revolution of the particle in the magnetic field is given by the formula as follows :

It is given that the magnetic field is uniform. The mass of the second particle is the same as that of a proton but thecharge of this particle is different from that of a proton.

If both particles take the same amount of time to go once around their respective circles. So,

So, the change on the second particle is
.
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
The third choice.
The driver wants to see the object that is behind him. The light reflects off the mirror into the eyes of the driver portraying the object behind him
Answer:
20 ms⁻¹
360 J
Explanation:
Kinetic energy is the energy possessed by a moving object solely due to its motion.
You can get the K.E. of an object using the equation,
K.E. = (1/2)mv² where all terms in usual meaning
So you get,
K.E. = 36000 = (1/2)×180×v²
v = 20 ms⁻¹
Also,
K.E. = (1/2)×80×3² = 360 J