Answer:
D
Explanation:
To know which is most or least cost-effective, it's not enough to look at only the per day rate, or only the time to complete. You have to multiply them to get the total cost of the project.
![\left[\begin{array}{ccccc}&Cost\ per\ day\ (\$)&Time\ to\ complete\ (days)&Total\ cost\ (\$)\\Zoe&500&8&4000\\Greg&650&10&6500\\Orion&400&12&4800\\Jin&700&5&3500\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%26Cost%5C%20per%5C%20day%5C%20%28%5C%24%29%26Time%5C%20to%5C%20complete%5C%20%28days%29%26Total%5C%20cost%5C%20%28%5C%24%29%5C%5CZoe%26500%268%264000%5C%5CGreg%26650%2610%266500%5C%5COrion%26400%2612%264800%5C%5CJin%26700%265%263500%5Cend%7Barray%7D%5Cright%5D)
As you can see, Greg is the least cost-effective because he charges the most for the project.
Answer:
M =2.33 kg
Explanation:
given data:
mass of piston - 2kg
diameter of piston is 10 cm
height of water 30 cm
atmospheric pressure 101 kPa
water temperature = 50°C
Density of water at 50 degree celcius is 988kg/m^3
volume of cylinder is 


mass of available in the given container is



M =2.33 kg
Answer:
Object-Oriented Software Engineering Using UML, Patterns, and Java, 3e, shows readers how to use both the principles of software engineering and the practices of various object-oriented tools, processes, and products.
Answer:
The current drawn from the outlet is 0.2 A
The number of turns on the input side is 350 turns
Explanation:
Given;
number of turns of the secondary coil, Ns = 35 turns
the output current,
= 2 A
power supplied,
= 24 W
the standard wall outlet in most homes = 120 V = input voltage
For an ideal transformer; output power = input power
the current drawn from the outlet is calculated;

The number of turns on the input side is calculated as;
