The empirical formula : CH₃
<h3>Further explanation</h3>
Given
2.5 g sample
2.002 g Carbon
Required
The empirical formula
Solution
Mass of Hydrogen :
= 2.5 - 2.002
= 0.498
Mol ratio C : H :
C : 2.002/12 = 0.167
H : 0.498/1 = 0.498
Divide by 0.167 :
C : H = 1 : 3
It always shift to the direction where balance out the reaction
here
<span>It shifts in the exothermic direction.</span>
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
NH4+ and NH3 are an acid-conjugate base pair, since NH4+ is an acid, while NH3 is its conjugate base (since it is without the H+).
H2O and H3O+ can also be considered an acid-conjugate base pair, since H3O+ is an acid, while H2O would be its conjugate base. (But if only 1 answer is to be selected, it should be the NH4+ and NH3)
NH4+ and H3O+ are both acids, and both H2O and NH3 can be considered bases.