Actually, there are four kinds of reptile motion:
Concertina - vermiform. Circular muscles around the snake squeeze the front of the snake's body out long, then the latter half is pulled forward.
Rectilinear crawling - Belly scutes are moved forward individually in a wave-like motion.
Side-winding - Snake's version of "walking". Use by several species to move over fluidic substrates, such as sand.
Lateral undulation - Most common form of movement. Snake presses on alternating pressure points to force body forward (or backward)
(taken from a user on Yahoo from Correct Answers)
Answer:
–2.23 L
Explanation:
We'll begin by calculating the final volume. This can be obtained as follow:
Initial pressure (P₁) = 1.03 atm
Initial volume (V₁) = 3.62 L
Final pressure (P₂) = 2.68 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
1.03 × 3.62 = 2.68 × V₂
3.7286 = 2.68 × V₂
Divide both side by 2.68
V₂ = 3.7286 / 2.68
V₂ = 1.39 L
Finally, we shall determine the change in volume. This can be obtained as follow:
Initial volume (V₁) = 3.62 L
Final volume (V₂) = 1.39 L
Change in volume (ΔV) =?
ΔV = V₂ – V₁
ΔV = 1.39 – 3.62
ΔV = –2.23 L
Thus, the change in the volume of her lung is –2.23 L.
NOTE: The negative sign indicate that the volume of her lung reduced as she goes below the surface!
Answer: 24.1 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Thus the volume of the sample when heated to 220.0oC and the pressure is constant is 24.1 L
Answer: C) Tetrahedral
Explanation:
The number of electron pairs is 4 that means the hybridization will be
but as there are three bonding domains and one nonbonding domain, thus electronic geometry is tetrahedral and the molecular geometry will be trigonal pyramidal.
Linear electron geometry is possible when number of electron pairs is 2 and the hybridization will be
.
Trigonal planar geometry is possible when number of electron pairs is 3 and the hybridization will be
.
Trigonal bipyramidal geometry is possible when number of electron pairs is 5 and the hybridization will be
.
Octahedral geometry is possible when number of electron pairs is 6 and the hybridization will be
.
Reactants Hydrogen: 5
Products Hydrogen: 5
Reactants Carbon: 3
Products Carbon: 3
Reactants Oxygen: 4
Products Oxygen: 5