Answer:
(x+y)
Step-by-step explanation:

Thus, the HCF is (x+y).
Given:
Square pyramid with lateral faces.
646 ft wide at the base.
350 ft high.
Because of the term lateral faces, we need to get the lateral area of the square pyramid.
Lateral Area = a √a² + 4 h² ; a = 646 ft ; h = 350 ft
L.A. = 646 ft √(646ft)² + 4 (350ft)²
L.A. = 646 ft √417,316 ft² + 4 (122,500 ft²)
L.A. = 646 ft √417,316 ft² + 490,000 ft²
L.A. = 646 ft √907,316 ft²
L.A. = 646 ft * 952.53 ft
L.A. = 615,334.38 ft²
Answer:
That would be 530.93
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given a general quadratic formula given as ax²bx+c = 0
To generate the general formula to solve the quadratic equation, we can use the completing the square method as shown;
Step 1:
Bringing c to the other side
ax²+bx = -c
Dividing through by coefficient of x² which is 'a' will give:
x²+(b/a)x = -c/a
- Completing the square at the left hand side of the equation by adding the square of half the coefficient x i.e (b/2a)² and adding it to both sides of the equation we have:
x²+(b/a)x+(b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a+(b/2a)²
(x+b/2a)² = -c/a + b²/4a²
- Taking the square root of both sides
√(x+b/2a)² = ±√-c/a + b²/√4a²
x+b/2a = ±√(-4ac+b²)/√4a²
x+b/2a =±√b²-4ac/2a
- Taking b/2a to the other side
x = -b/2a±√√b²-4ac/2a
Taking the LCM:
x = {-b±√b²-4ac}/2a
This gives the vertex form with how it is used to Solve a quadratic equation.