Answer:
for students to do nothing
Explanation:
because doing nothing is not a course goal
The formula we can use in this case is:
v = v0 + a t
where v is final velocity, v0 is initial velocity, a is
acceleration and t is time
So finding for v0:
v0 = v – a t
v0 = 43.7 – (2.5) 2.7
v0 = 36.95 m/s
The answer would be:
Precipitation sometimes occurs when the horizontal winds move air against mountain ranges, forcing air to rise as it passes over the mountains.
This happens when the air is forced to move from low elevation to high elevation due to rising terrain. This causes the air to cool adiabatically. This increases the relative humidity and causes clouds to form, under certain conditions it can also create precipitation.
The three ways a person can manipulate light
would be the following:,
filter, and the time the photograph is taken
<span>1.
</span>Angle
- <span>The </span>camera angle<span> <span>marks
the specific location at which the movie </span></span>camera<span> <span>or
video </span></span>camera<span> is
placed to take a shot.</span>
<span>2.
</span>Filter - Camera<span> <span>lens </span></span>filters<span> <span>still have many uses in digital photography,
and should be an important part of any photographer's </span></span>camera<span> bag.</span>
<span>3.
</span>Time
the photograph is taken - The golden hour, sometimes called the "magic
hour", is roughly the first hour of light after sunrise, and the last hour
of light before sunset, although the exact duration varies between seasons.
During these times the sun is low in the sky, producing a soft, diffused light
which is much more flattering than the harsh midday sun that so many of us are
used to shooting in.
I am hoping that these answers
have satisfied your queries and it will be able to help you in your endeavors, and
if you would like, feel free to ask another question.
Since the Earth is almost spherical in shape, we are actually to find first the volume of the spherical segment at a depth of 1,000 m. The radius of the Earth is 6,371,000 meters. The volume of a spherical segment is:
V = 1/3*πh²(3r - h)
Substituting the values and making sure the units is in mm,
V = 1/3*π(1000 m * 1000 mm/1 m)²[3(6,371,000 m * 1000 mm/1 m) - (1000 m * 1000 mm/1 m)]
V = 2×10²² mm³
Thus, the total amount of bacteria is:
2×10²² mm³ * 100 bacteria/1 mm³ = 2×10²⁴ bacteria