Answer:
The gunner must apply 240
N to the gun to stop it from moving back.
Explanation:
Answer:
because it is less dense than the surrounding air
Explanation:
The total moment of inertia about an axis is :
for a ring of mass m and radius straight r attached to a thin rod.
<h3>
Determine the Total moment of Inertia about an axis </h3>
<u>Given data:</u>
mass of ring --> m
radius of ring --> r
mass of rod --> M
Length of rod ---> L ( 2 * radius )
Total Moment of Inertia about an axis = Irod + Iring
where : Irod = moment of inertia of rod, Iring = moment of inertia of ring
Irod = ML² / 3
Iring = 2mr² / 5
moment of inertia around an axis by Iring = I
where ; I = 2mr² / 5 + ML² according to parallel axis theorem
Hence the Total moment of Inertia about an axis is :
Itotal = 2mr²/5 + ML² + ML² / 3
= 
Learn more about Moment of inertia : brainly.com/question/6956628
Answer:
magnitude

Direction
Opposite to the velocity of aircraft
Explanation:
As we know that the initial speed of the aircraft when it land on the ground is

now the final speed of the aircraft when it covers 705 m on runway is given as

so here we know that

so now we can say that



Answer:
The high of the ramp is 2.81[m]
Explanation:
This is a problem where it applies energy conservation, that is part of the potential energy as it descends the block is transformed into kinetic energy.
If the bottom of the ramp is taken as a potential energy reference point, this point will have a potential energy value equal to zero.
We can find the mass of the box using the kinetic energy and the speed of the box at the bottom of the ramp.
![E_{k}=0.5*m*v^{2}\\\\where:\\E_{k}=3.8[J]\\v = 2.8[m/s]\\m=\frac{E_{k}}{0.5*v^{2} } \\m=\frac{3.8}{0.5*2.8^{2} } \\m=0.969[kg]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%5C%5C%5C%5Cwhere%3A%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5Cv%20%3D%202.8%5Bm%2Fs%5D%5C%5Cm%3D%5Cfrac%7BE_%7Bk%7D%7D%7B0.5%2Av%5E%7B2%7D%20%7D%20%5C%5Cm%3D%5Cfrac%7B3.8%7D%7B0.5%2A2.8%5E%7B2%7D%20%7D%20%5C%5Cm%3D0.969%5Bkg%5D)
Now applying the energy conservation theorem which tells us that the initial kinetic energy plus the work done and the potential energy is equal to the final kinetic energy of the body, we propose the following equation.
![E_{p}+W_{f}=E_{k}\\where:\\E_{p}= potential energy [J]\\W_{f}=23[J]\\E_{k}=3.8[J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%2BW_%7Bf%7D%3DE_%7Bk%7D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%3D%20potential%20energy%20%5BJ%5D%5C%5CW_%7Bf%7D%3D23%5BJ%5D%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5C)
And therefore
![m*g*h + W_{f}=3.8\\ 0.969*9.81*h - 23= 3.8\\h = \frac{23+3.8}{0.969*9.81}\\ h = 2.81[m]](https://tex.z-dn.net/?f=m%2Ag%2Ah%20%2B%20W_%7Bf%7D%3D3.8%5C%5C%200.969%2A9.81%2Ah%20-%2023%3D%203.8%5C%5Ch%20%3D%20%5Cfrac%7B23%2B3.8%7D%7B0.969%2A9.81%7D%5C%5C%20h%20%3D%202.81%5Bm%5D)