Answer: 12Mg/h
Explanation:
Let the spring is compressed by a distance x,before the lift stops,then
Mg(h+x)= 1/2 kx^2 ............... 1
Kx - Mg = M ( 5g ) ............ 2
Make x the subject in equation 2
Kx = 5Mg + Mg
Kx = 6Mg
x = 6Mg/k ............ 3
Put equation 3 into 1
Mg ( h + x ) = 1/2 kx^2
Mgh + Mgx = 1/2kx^2
Mgh + Mg × 6Mg/k = 1/2k × ( 6Mg/k )^2
Mgh + Mg× 6Mg/k = 1/2k 36M^2g^2/ k^2
h =18Mg/k - 6Mg/h
K = 12Mg/h
Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A
Answer:
Explanation:
We shall apply law of conservation of momentum to know velocity after collision . Let it be v .
total momentum before collision = total momentum after collision
15 x 1.5 - 12 x .75 = ( 15 + 12 ) v
v = .5 m /s
kinetic energy before collision
1/2 x 15 x 1.5² + 1/2 x 12 x .75²
= 16.875 + 3.375
= 20.25 J
kinetic energy after collision
= 1/2 x ( 15 + 12 ) x .5²
= 3.375 J
Loss of energy = 16.875 J
This energy appear as heat and sound energy that is produced during collision .