Answer: A) mass on earth surface = 5.91kg
B) mass on surface of jupiter = 5.91kg
C) weight on surface of jupiter = 10.697N
Explanation:
The relationship between weight (W), mass (m) and acceleration due gravity (g) is given below
W=mg
From the question, g= 9.8m/s² and weight on the surface on the earth is 58N
A) The mass of watermelon on earth is
m = 58/ 9.8 = 5.91kg
B) the mass of the watermelon on jupiter is 5.91kg.
You will notice this is the same as the mass of watermelon on earth and that is so because mass is a scalar quantity that does not depends on the distance away from the center of the earth (unlike weight which is a vector) thus making it constant all through any location.
C) mass of watermelon is 5.91kg, g=9.8m/s² weight of watermelon on jupiter is given below as
W = mg
W = 5.91 x 9.8
= 10.697N.
A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
Answer:
The value is 
Explanation:
From the question we are told that
The operating temperature is 
The emissivity is 
The power rating is 
Generally the area is mathematically represented as

Where
is the Stefan Boltzmann constant with value

So


Answer:
The magnitude of vector B is 43 units and it points in the negative y-direction.
Explanation:
Resultant of vectors = vector sum of all the vectors
Vector A = 29j
Vector B = ?
Resultant of vector A and B = R = -14j
R = A + B
-14j = 29j + B
B = -14j - 29j = - 43j
Hence, the magnitude of vector B is 43 units and it points in the negative y-direction.
The answer is 24N. Since the body is moving with constant velocity all the forces must balance (equal & opposite)