1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
8

What is the domain of this function?

Mathematics
1 answer:
sdas [7]3 years ago
4 0

\text{We know}\ \sqrt{a}\ \text{is exist for}\ a\geq0.\\\\\text{Therefore the domain of}\ f(x)=3\sqrt{x-2}\ \text{is:}\\\\x-2\geq0\qquad\text{add 2 to both sides}\\\\\boxed{x\geq2\to x\in[2,\ \infty)}

You might be interested in
PLEASE HELP ME PLEASE
crimeas [40]

Answer:

THE ANSWER IS 20 BECAUSE THAT IS THE ANSWER.

Step-by-step explanation:

7 0
3 years ago
What is the median out of 3,5,6,7,9,6,8
alina1380 [7]

Answer:

7

Step-by-step explanation:

.

3 0
3 years ago
Read 2 more answers
Evaluate the double integral.
Fynjy0 [20]

Answer:

\iint_D 8y^2 \ dA = \dfrac{88}{3}

Step-by-step explanation:

The equation of the line through the point (x_o,y_o) & (x_1,y_1) can be represented by:

y-y_o = m(x - x_o)

Making m the subject;

m = \dfrac{y_1 - y_0}{x_1-x_0}

∴

we need to carry out the equation of the line through (0,1) and (1,2)

i.e

y - 1 = m(x - 0)

y - 1 = mx

where;

m= \dfrac{2-1}{1-0}

m = 1

Thus;

y - 1 = (1)x

y - 1 = x ---- (1)

The equation of the line through (1,2) & (4,1) is:

y -2 = m (x - 1)

where;

m = \dfrac{1-2}{4-1}

m = \dfrac{-1}{3}

∴

y-2 = -\dfrac{1}{3}(x-1)

-3(y-2) = x - 1

-3y + 6 = x - 1

x = -3y + 7

Thus: for equation of two lines

x = y - 1

x = -3y + 7

i.e.

y - 1 = -3y + 7

y + 3y = 1 + 7

4y = 8

y = 2

Now, y ranges from 1 → 2 & x ranges from y - 1 to -3y + 7

∴

\iint_D 8y^2 \ dA = \int^2_1 \int ^{-3y+7}_{y-1} \ 8y^2 \ dxdy

\iint_D 8y^2 \ dA =8 \int^2_1 \int ^{-3y+7}_{y-1} \ y^2 \ dxdy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( \int^{-3y+7}_{y-1} \ dx \bigg)   dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( [xy^2]^{-3y+7}_{y-1} \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( [y^2(-3y+7-y+1)]\bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ([y^2(-4y+8)] \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \int^2_1  \bigg ( -4y^3+8y^2 \bigg ) \ dy

\iint_D 8y^2 \ dA =8 \bigg [\dfrac{ -4y^4}{4}+\dfrac{8y^3}{3} \bigg ]^2_1

\iint_D 8y^2 \ dA =8 \bigg [ -y^4+\dfrac{8y^3}{3} \bigg ]^2_1

\iint_D 8y^2 \ dA =8 \bigg [ -2^4+\dfrac{8(2)^3}{3} + 1^4- \dfrac{8\times (1)^3}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -16+\dfrac{64}{3} + 1- \dfrac{8}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{64-8}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{56}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [  \dfrac{-45+56}{3}\bigg]

\iint_D 8y^2 \ dA =8 \bigg [  \dfrac{11}{3}\bigg]

\iint_D 8y^2 \ dA = \dfrac{88}{3}

4 0
2 years ago
If f(x) = 2x - 6 and g(x) = 3x + 9, find (f+g)(x)
valina [46]

Answer:

(f+g)(x)  =  5x + 3

Step-by-step explanation:

f(x) = 2x - 6 and g(x) = 3x + 9, find (f+g)(x)

(f+g)(x) = f  + g  =  (2x - 6)  + (3x + 9) =   5x + 3

(f+g)(x) = f  + g  =  5x + 3

3 0
3 years ago
Read 2 more answers
= Test: Chapter 1-4 Test
pochemuha

Answer:

D

Step-by-step explanation:

the explanation on D

6 0
3 years ago
Other questions:
  • Number 4 please :))))))))))))
    9·1 answer
  • Find m∠DOC.<br> Find m∠DOC.<br> Find m∠DOC.
    8·1 answer
  • 8(2x+9)=56 I need some help with this I just don't get it
    5·2 answers
  • Someone plzz give me the answers to any of this I have a hard time doing this
    6·1 answer
  • ANSWER ALL THE QUESTIONS THEN YOU WILL BE BRAINLIEST!
    9·2 answers
  • What about the equation?
    11·2 answers
  • Share 45 in the ratio 1:2.
    9·1 answer
  • What is the simplified fractional equivalent of the terminating decimal 0.32
    7·2 answers
  • Help me plz 20 points to who ever gets it right
    6·1 answer
  • In the pipe flange shown to the right, the ten bolt holes are equally spaced. What is the spacing of the holes, in degrees?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!