1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
12

-9= 1.1k + 3.5 answer? thank you to whoever answers

Mathematics
2 answers:
fomenos3 years ago
3 0
-9 = 1.1k + 3.5
-3.5 -3.5

-12.5 = 1.1k
/ 1.1 / 1.1

-11.4 = k
Aliun [14]3 years ago
3 0
Subtract <span>3.5<span>3.5</span></span><span> from both sides
</span><span><span>−9−3.5=1.1×k</span>Simplify <span>-9-3.5<span>−9−3.5</span></span><span> to </span><span>-12.5<span>−12.<span>5
</span></span></span><span><span>−12.5=1.1×k</span>Divide both sides by <span>1.1<span>1.<span>1
</span></span></span><span>−<span>​ 12.5/1.1 = k
</span></span>Simplify 12.5/1.1 to 11.36363<span>6
</span>−11.363636=<span>k
</span>then s<span>witch sides
</span>k=−11.36363<span>6
</span>
I could be wrong?? Let me know if this helped and if it's right

</span></span>
You might be interested in
Solve for x. 5x/7 - 5 = 50
Ratling [72]

Answer:

solution,

5x/7-5=50

5x-35=50

5x=50-35

5x=15

x=15/5

x=3.

3 0
3 years ago
Read 2 more answers
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
2 years ago
Express the -0.345 in the form of p\q and reduce it to the lowest term​
Mamont248 [21]

Answer:

-69/200

Step-by-step explanation:

-0.345 is in decimal form.

In Fractional form (p/q)

=-345/1000

To simplify, divide the numerator and the denominator by the G.C.D(Greatest Common Divisor) of p and q.

In this case,G.C.D of 345 and 1000 is 5.

Simplified form=-69/200 [ANS]

3 0
3 years ago
Complete each function table,then graph the function
babunello [35]

The y values from:

1. ₋6

2. ₋3

3. 0

4. 3

Given the x values and y value as y = 3x

1. when x = ₋2 then y = 3x

y = 3(₋2)

y = ₋6

2. when x = ₋1 then y = 3x

y = 3(₋1)

y = ₋3

3. when x = 0 then y = 3x

y = 3(0)

y = 0

4. when x = 1 then y = 3x

y = 3(1)

y = 3

therefore we get the points as (₋2 , ₋6) (₋1 , ₋3) (0,0) (1 , 3).The graph is pltted and attached.

Learn more about Coordinate geometry here:

brainly.com/question/11234618

#SPJ9

7 0
1 year ago
If 433 = 100% then what percent does 383 equal
Goryan [66]

Answer:

88.46%

Step-by-step explanation:

433 - 383 = 50

50 ÷ 433 = 0.1154

0.1154 x 100 = 11.54%

100% - 11.54% = 88.46%

<u>Check work:</u>

433 x 88.46% = 383

5 0
3 years ago
Other questions:
  • somebody read 50 pages of a book in 50 minutes she reads at a constant rate how many pages did she read per minute
    14·1 answer
  • 13 +x &gt; 11. What is inequality?
    14·2 answers
  • -2x + 4x = -4 + 0<br> What is the answer?
    8·2 answers
  • What is (-9)(-4)(-4)(8)
    10·2 answers
  • How do find the rate of change
    13·1 answer
  • Solve the quadratic equation 30 + x - x2 = 0
    14·1 answer
  • PA) = 0.20<br> AB) = 0.25<br> PA and B) = 0.10<br> What is PBA)?
    9·1 answer
  • Ethan lives 2 5/12 miles from school. Marquis lives 7/12 mile closer to school than ethan. How far does marquis live from school
    15·1 answer
  • Write an equation parallel to y=2x+4 that passes through the point (-2,4)
    13·1 answer
  • PLEASE HELP NOW!!!! 85 POINTS GIVEN! North America and Eurasia are moving apart due to continental drift. Tanvi calculates that
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!