A basketball is the shape of a sphere.
The volume of a sphere is given by

Given that the diameter of the basketball is 10 in., thus the radius is 10 / 2 = 5 in.
Thus, the volume of the basketball is given by

Therefore, The best approximate of the volume of the basketball is
Answer: £122.4
Step-by-step explanation:
Given
The rate of interest is 4%
The principal invested is £1500
the time period is 2 years
Compound interest is given by

put values
![C.I.=1500(1+0.04)^2-1500\\C.I.=1500[1.04^2-1]\\C.I.=1500[1.0816-1]\\C.I.=1500\times 0.0816\\C.I.=122.4](https://tex.z-dn.net/?f=C.I.%3D1500%281%2B0.04%29%5E2-1500%5C%5CC.I.%3D1500%5B1.04%5E2-1%5D%5C%5CC.I.%3D1500%5B1.0816-1%5D%5C%5CC.I.%3D1500%5Ctimes%200.0816%5C%5CC.I.%3D122.4)
Therefore, interest earned is £122.4
Answer:
7,13,37,55,103
Step-by-step explanation:
y = 5 + 2x^2
if x =1
y = 5 + 2(1)^2
1^2 = 1
2 x 1 = 2
y=5 + 2 or y = 7
you substatute each one in for x to solve for y
Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>