1) See attached figure
The relationship between charge and current is:
where
i is the current
Q is the charge
t is the time
Therefore, the current is the rate of change of the charge passing through a given point over time.
This means that for a graph of charge over time, the current is just equal to the slope of the graph.
For the graph in this problem:
- Between t = 0 and t = 2 s, the slope is
therefore the current is
i = 25 A
- Between t = 2 s and t = 6 s, the slope is
therefore the current is
i = -25 A
- Between t = 6 s and t = 8 s, the slope is
therefore the current is
i = 25 A
The figure attached show these values plotted on a graph.
2)
The previous equation can be rewritten as
This equation is valid if the current is constant: if the current is not constant, then the total charge is simply equal to the area under a current vs time graph.
Here we have the current vs time graph, so we gave to find the area under it.
The area of the first triangle is:
While the area of the second square is
So, the total area (and the total charge) is
Answer:
I wish i saw the field shown to the right
Explanation:
Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°