Answer:Ultraviolet radiation has shorter wavelengths and higher energy than infrared radiation.
Explanation: Electromagnetic radiation radiations which have both electrical and magnetic properties,they can be transmitted through space or through a medium.
It includes Gamma radiation, infra-red, visible light, Ultraviolet radiation etc they occur with different wavelength, the lower the wavelength the higher the Energy dissipated per photon. According to their order of decreasing wavelength and increased energy they are classified as follows.
RADIO WAVE, MICRO WAVE, INFRA-RED, VISIBLE LIGHT, ULTRAVIOLET RAY, X-RAY, GAMMA RAYS.
Answer: An Incident on Route 12 is presented here in a high quality paperback edition. This popular classic work by James H. Schmitz is in the English language, and may not include graphics or images from the original edition.
Explanation: I HOPE THAT HELPED
Answer:
No, not necessarily
Explanation:
If an object is moving with an acceleration that causes its speed to be reduced, there will be a moment in which it reaches v = 0, but this doesn't necessarily mean that the acceleration isn't acting anymore. If the object continues its movement with the same acceleration, it's velocity will become negative.
An example of an object that has zero velocity but non-zero acceleration:
If you throw an object in the air with a certain velocity, it will move vertically, reducing its velocity in a 9,8
rate (which is the acceleration caused by gravity). At a certain point, the object will reach its maximum height, and will start to fall. In the exact moment that it reaches the maximum height, before it starts falling, its velocity is zero, but gravity is still acting on the object (this is the reason why it starts falling instead of just being stopped at that point). Therefore, at that point, the object has zero velocity but an acceleration of 9,8
.
Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
Answer:
maximum amplitude = 0.08 m
Explanation:
Given that
Time period T= 0.58 s
acceleration of gravity g= 9.8 m/s²
We know that time period of simple harmonic motion given as
T = 2π/ω
0.58 = 2π/ω
ω = 10.83rad/s
ω=angular frequency
Lets take amplitude = A
The maximum acceleration given as
a= ω² A
The maximum acceleration should be equal to g ,then block does not separate
a= ω² A
9.8 = 10.83² A
A = 0.08m
maximum amplitude = 0.08 m