1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
6

Construct a truth table for p^(q^r)

Mathematics
1 answer:
kiruha [24]3 years ago
8 0

Answer:

check.

Step-by-step explanation:

I did the table in the picture below. To understand it you only need to know that the ^ only is true when both propositions (left and right) are true.

You might be interested in
Confused can someone help
Alex

Answer:

B.   3x^2 - 2x - 1.

Step-by-step explanation:

(f + g)x = f(x) + g(x)

= -4x + 3 + 3x^2 + 2x - 4

Adding like terms we get the answer:

= 3x^2 - 2x - 1.

7 0
4 years ago
Read 2 more answers
A river flows due south at 4 mi/h. A swimmer attempting to cross the river heads due east swimming at 2 mi/h relative to the wat
Inessa05 [86]

Answer:

\overrightarrow{V_{S,G}}=2\widehat{i}-4\widehat{j} mi/h

Step-by-step explanation:

velocity of river with respect to ground = 4 mi/h south

\overrightarrow{V_{R,G}}=4(\widehat{-j})

Velocity of swimmer with respect to river = 2 mi/h east

\overrightarrow{V_{S,R}}=2(\widehat{i})

According to the formula of relative velocity

\overrightarrow{V_{S,R}}=\overrightarrow{V_{S,G}}-\overrightarrow{V_{R,G}}

2\widehat{i}=\overrightarrow{V_{S,G}}+4\widehat{j}

Where, V(S,G) be the velocity of swimmer with respect to ground, it is true velocity of swimmer.  

\overrightarrow{V_{S,G}}=2\widehat{i}-4\widehat{j} mi/h

5 0
4 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
You previously found the mean of this data set. Use that in answering the question. 63, 89, 92, 73, 79, 72, 34, 36, 94, 21, 25,
kicyunya [14]

Answer:

Sum of squares of differences = 11239.74

Step-by-step explanation:

We are given the following data set:

63, 89, 92, 73, 79, 72, 34, 36, 94, 21, 25, 93, 22, 90, 79

We have to calculate the sum of square of the data set.

Formula:

\text{Sum of square of differences} = \sum (x_i -\bar{x})^2

where x_i are data points, \bar{x} is the mean and n is the number of observations.  

Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}

Mean =\displaystyle\frac{962}{15} = 64.13

Sum of squares of differences =

1.284444444 + 618.3511113 + 776.5511113 + 78.61777778 + 221.0177779 + 61.88444445 + 908.0177776 + 791.4844443 + 892.017778 + 1860.484444 + 1531.417778 + 833.2844446 + 1775.217777 + 669.0844446 + 221.0177779

= 11239.74

3 0
3 years ago
Find the distance between the points (-3,-2) and (1,-5)
Vsevolod [243]
The slope or distance is 4/-3
7 0
3 years ago
Other questions:
  • Sharon has a rectangular bedspread that measures 3 feet by 5 feet. She wants to
    13·1 answer
  • Given a polynomial function f(x), describe the effects on the y-intercept, regions where the graph is increasing and decreasing,
    6·2 answers
  • Wht is the sum of 3b/b+2and12
    8·1 answer
  • It rained 0.78 inches on Monday. On Tuesday, it rained 0.76 inches less than on Monday. How much did it rain on Tuesday?
    6·1 answer
  • Ayesha wanted her friend to draw a shape. Ayesha said at least one pair of opposite sides must be parallel. Which of the followi
    9·2 answers
  • 6 less than twice a number.
    9·1 answer
  • Subtracing 3x2+4x-5 from 7x2-3x from this polynomial the difference is
    14·1 answer
  • Rewrite in scientific notation. 5,234,000,000,000
    14·1 answer
  • What is the difference of the means of the distributions? 15 30 45 60
    14·2 answers
  • Solve the equation<br><br> 90= -20x <br> Plz help
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!