See the picture attached to better understand the problem
we know that
If two secant segments are drawn to a <span>circle </span><span>from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment.
</span>so
jl*jk=jn*jm------> jn=jl*jk/jm
we have
<span>jk=8,lk=4 and jm=6
</span>jl=8+4----> 12
jn=jl*jk/jm-----> jn=12*8/6----> jn=16
the answer isjn=16
Answer:
rise over run
Step-by-step explanation:
Answer:
The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10%.
This is the 10th percentile, which is X when Z has a pvalue of 0.1. So X when Z = -1.28.




The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.