Answer:
12πx⁴, 15x⁷, 16x⁹
Step-by-step explanation:
Volume of a cylinder: πr²h
Volume of a rectangular prism: whl
Plugging in variables for the volume of a cylinder, we get: 3x²·(2x)²·π
3x²·(2x)² = 3·2·2·x·x·x·x
= 12·x⁴
=12x⁴
Now, we just multiply that by π.
12x⁴·π = 12x⁴π
A monomial is a 1-term polynomial, so 12x⁴π is a monomial.
Plugging in variables for the volume of a rectangular prism, we get: 5x³·3x²·x²
5x³·3x² = 5·3·x·x·x·x·x
= 15·x⁵
= 15x⁵
Now, we just multiply that by x².
15x⁵·x²
= 15·x·x·x·x·x·x·x
= 15·x⁷
=15x⁷
A monomial is a 1-term polynomial, so 15x⁷ is a monomial.
Same steps for the last shape, another rectangular prism:
2x²·2x³·4x⁴
2x²·2x³
= 2·2·x·x·x·x·x
= 4·x⁵
= 4x⁵
Now, we just multiply that by 4x⁴.
4x⁵·4x⁴
= 4·4·x·x·x·x·x·x·x·x·x·
= 16·x⁹
= 16x⁹
A monomial is a 1-term polynomial, so 16x⁹ is a monomial.
3/8=answer
1) 5/8-1/4=
2) <u>(</u><u>5</u><u>•</u><u>4</u><u>)</u><u>-</u><u>(</u><u>1</u><u>•</u><u>8</u><u>)</u><u>=</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8•4
3) <u>20-8</u><u> </u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32 =
4) <u>12</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32=
5) <u>12</u><u>/</u><u>4</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32/4=
6) <u>3</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8 =answer
Answer:
As per the question, we need to convert product of sum into sum of product,
Given:
(A' +B+C')(A'+C'+D)(B'+D'),
At first, we will solve to parenthesis,
= (A'+C'+BD) (B'+D')
As per the Rule, (A+B)(A+C) = A+BC, In our case if we assume X = A'+C', then,
(A' +B+C')(A'+C'+D) = (A'+C'+B)(A'+C'+D) = (A'+C'+BD)
Now,
= (A'+C'+BD) (B'+D') = A'B' + A'D' + C'B' +C'D' +BDB' +BDD"
As we know that AA' = 0, it mean
=A'B'+A'D'+C'B'+C'D'+D*0+B0
=A'B'+A'D'+C'B'+C'D' as B * 0 and D*0 = 0
Finally, minimum sum of product boolean expression is
A''B'+A'D'+C'B'+C'D'
=