Answer:
Energy loss per minute will be 
Explanation:
We have given the star produces power of 
We know that 1 W = 1 J/sec
So 
Given time = 1 minute = 60 sec
So the energy loss per minute 
We multiply with 60 we have to calculate energy loss per minute
(a) The magnitude of the acceleration of the electron is 5.62 x 10¹³ m/s².
(b) The speed of the electron after the given time is 4.78 x 10⁵ m/s.
<h3>
Acceleration of the electron</h3>
The acceleration of the electron is calculated as follows;
F = qE
ma = qE
a = qE/m
a = (1.6 x 10⁻¹⁹ x 320)/(9.11 x 10⁻³¹)
a = 5.62 x 10¹³ m/s²
<h3>Speed of the electron</h3>
v = at
v = 5.62 x 10¹³ m/s² x 8.50 x 10⁻⁹ s
v = 4.78 x 10⁵ m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
Answer:
3.08 Nm
Explanation:
N = 200, diameter = 6 cm, radius = 3 cm, I = 7 A, B = 0.90 T, Angle = 30 degree
The angle made with the normal of the coil, theta = 90 - 30 = 60 degree
Torque = N I A B Sin Theta
Torque = 200 x 7 x 3.14 x 0.03 x 0.03 x 0.90 x Sin 60
Torque = 3.08 Nm
Given parameters:
Mass of object = 6.7kg
Velocity = 8m/s
Unknown parameter:
Kinetic energy = ?
Energy is defined as the ability to do work. There are two forms of energy;
Kinetic and potential energy.
Kinetic energy is the energy due to the motion of a body. Whereas, potential energy is the energy due to the position of a body usually at rest.
Kinetic energy is mathematically expressed as;
Kinetic energy = 
where m is the mass of the body
v is the velocity of the body
Since we have been given both mass and velocity, input the parameter to solve for the unknown;
Kinetic energy =
x 6.7 x 8² = 214.4J
So the kinetic energy of the body is 214.4J