1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
2 years ago
10

In which of the following scenarios is the total momentum of the system conserved?

Physics
1 answer:
leonid [27]2 years ago
7 0

Answer:

The total momentum of a system is conserved only when the system is closed.

Explanation:

You might be interested in
A coin is dropped in a 15.0 m deep well.
labwork [276]

Answer:

t = 1.75

t = 0.04

Explanation:

a)

For part 1 we want to use a kenamatic equation with constant acceleration:

X = 1/2*a*t^2

isolate time

t = sqrt(2X / a)

Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2

t = sqrt(2*15m / 9.8m/s^2)

t = 1.75 s

b)

The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:

v = d / t

isolate time

t = d / v

plug in known variables

t = 15m / 340m/s

t = 0.04 s

7 0
3 years ago
Convert 93.6 miles per hour. Convert this to kilometers per hour.
Readme [11.4K]

Answer:

150.6 km

Explanation:

One mile is about 1.61 km so multiply 93.6 by 1.6 which gives you above 150.6

3 0
3 years ago
How many oxygen atoms are in the following compound?<br> 8 C120
Novosadov [1.4K]

Answer:

There are 12 oxygen atoms in 8C12O.

6 0
3 years ago
An object of mass m = 4.0 kg, starting from rest, slides down an inclined plane of length l = 3.0 m. The plane is inclined by an
kirill [66]

Answer:

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane:

Wg= 58.8 J is positive

Explanation:

Nomenclature

vf: final velocity

v₀ :initial velocity

a: acceleleration

d: distance

Ff: Friction force

W: weight

m:mass

g: acceleration due to gravity

Graphic attached

The attached graph describes the variables related to the kinetics of the object (forces and accelerations)

Calculation de of the components of W in the inclined plane

W=m*g

Wx₁ = m*g*sin30°

Wy₁=  m*g*cos30°

Object kinematics on the inclined plane

vf₁²=v₀₁²+2*a₁*d₁

v₀₁=0

vf₁²=2*a₁*d₁

v_{f1} = \sqrt{2*a_{1}*d_{1}  }  Equation (1)

Object kinetics on the inclined plane (μ= 0.2)

∑Fx₁=ma₁  :Newton's second law

-Ff₁+Wx₁ = ma₁   , Ff₁=μN₁

-μ₁N₁+Wx₁ = ma₁      Equation (2)

∑Fy₁=0   : Newton's first law

N₁-Wy₁= 0

N₁- m*g*cos30°=0

N₁  =  m*g*cos30°

We replace   N₁  =  m*g*cos30 and  Wx₁ = m*g*sin30° in the equation (2)

-μ₁m*g*cos30₁+m*g*sin30° = ma₁   :  We divide by m

-μ₁*g*cos30°+g*sin30° = a₁  

g*(-μ₁*cos30°+sin30°) = a₁  

a₁ =9.8(-0.2*cos30°+sin30°)=3.2 m/s²

We replace a₁ =3.2 m/s² and d₁= 3m in the equation (1)

v_{f1} = \sqrt{2*3.2*3}  }

v_{f1} =\sqrt{2*3.2*3}

v_{f1} = 4.38 m/s

Rough surface  kinematics

vf₂²=v₀₂²+2*a₂*d₂   v₀₂=vf₁=4.38 m/s

0   =4.38²+2*a₂*d₂  Equation (3)

Rough surface  kinetics (μ= 0.3)

∑Fx₂=ma₂  :Newton's second law

-Ff₂=ma₂

--μ₂*N₂ = ma₂   Equation (4)

∑Fy₂= 0  :Newton's first law

N₂-W=0

N₂=W=m*g

We replace N₂=m*g inthe equation (4)

--μ₂*m*g = ma₂   We divide by m

--μ₂*g = a₂

a₂ =-0.2*9.8= -1.96m/s²

We replace a₂ = -1.96m/s² in the equation (3)

0   =4.38²+2*-1.96*d₂

3.92*d₂ = 4.38²

d₂=4.38²/3.92

d₂=4.38²/3.92

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf = - Ff₁*d₁

Ff₁= μ₁N₁= μ₁*m*g*cos30°= -0.2*4*9.8*cos30° = 6,79 N

Wf= -  6.79*3 = 20.4 N*m

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane

Wg=W₁x*d= m*g*sin30*3=4*9.8*0.5*3= 58.8 N*m

Wg= 58.8 J is positive

6 0
3 years ago
An infrared wave traveling through a vacuum has a frequency of 4.2
ololo11 [35]

Answer:O 7.1x10^-7 m

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • 9. How much work is done when a 15kg box is lifted to a height of 2 meters?
    14·1 answer
  • PlzHELP
    11·1 answer
  • Vector has a magnitude of 37 units and points in the positive y direction. When vector is added to , the resultant vector + poin
    13·1 answer
  • A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
    12·1 answer
  • Why does your heart not get tired of constantly beating throughout your body
    9·1 answer
  • Please help me with question 16 and question 17 . Thank you
    5·1 answer
  • Full moon is located______
    9·2 answers
  • 10. A child drops a ball from a window. The ball strikes the ground in 3.0 seconds. What is the velocity of the ball the instant
    11·1 answer
  • 8. A spring of spring constant 4 N/m is stretched 0.5 meters. How strong is the restoring force?
    13·1 answer
  • A scientist is measuring various properties of a sound wave. She measures the value 340 m/s. Which of the following wave charact
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!