Answer: C = Q/4πR
Explanation:
Volume(V) of a sphere = 4πr^3
Charge within a small volume 'dV' is given by:
dq = ρ(r)dV
ρ(r) = C/r^2
Volume(V) of a sphere = 4/3(πr^3)
dV/dr = (4/3)×3πr^2
dV = 4πr^2dr
Therefore,
dq = ρ(r)dV ; dq =ρ(r)4πr^2dr
dq = C/r^2[4πr^2dr]
dq = 4Cπdr
FOR TOTAL CHANGE 'Q', we integrate dq
∫dq = ∫4Cπdr at r = R and r = 0
∫4Cπdr = 4Cπr
Q = 4Cπ(R - 0)
Q = 4CπR - 0
Q = 4CπR
C = Q/4πR
The value of C in terms of Q and R is [Q/4πR]
Answer:
We know that in the decay process the sum of molecular number as well as molecular weight should be constant.
The following three reaction are as follows
1 .
Alpha decay of parent nuclide

The molecular number of alpha particle is 2 and molecular weight is 4 g/mol.
2.
Beta decay of daughter nuclide

v is the neutrino emission,The charge on the beta particle is zero.
3.
Alpha decay

Answer: It would take 3.23ms
Explanation: Please see the attachments below
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is

Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²