Answer:
HELLO THERE!
I HOPE MY ANSWER WILL HELP YOU :)
Explanation:
PLEASE NOTE; I HAVE WRITTEN THE ATOMIC NUMBER IN BRACKETS, NEXT TO THE SYMBOL OF THE ELEMENT
<span>Based on the experience of the responder, to correctly calculate measurements in real-world. Firstly is to avoid errors as much as possible. Errors are what makes your measurement invalid and unreliable. There are two types of error which is called the systematic error and the random error. Each error has different sources. Words that were mentioned –invalid and unreliable are very important key aspects to determine that your measure is truly accurate and consistent. Some would recommend using the mean method, doing three trials in measuring and getting their mean, in response to this problem.</span>
Answer:
TRUE
Explanation:
Production of Hydrocarbons from Natural Gas is as stated below:
Natural gas liquids include propane, butane, pentane, hexane, and heptane, but not methane and not <u>always</u> ethane, (<em>may include it </em><em><u>sometimes</u></em><em>.</em>) s<em>ince these hydrocarbons need refrigeration to be liquefied.</em>
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
Answer: 116g/mole
Explanation:
She didn't get the answer because she didn't add the them well , due to the bracket present.