Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.
where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
Answer:
Explanation:
A. Using
Sinစ= y/ L = 0.013/2.7= 0.00481
စ=0.28°
B.here we use
Alpha= πsinစa/lambda
= π x (0.0351)sin(0.28)/588E-9m
= 9.1*10^-2rad
C.we use
I(စ)/Im= (sin alpha/alpha) ²
So
{= (sin0.091/0.091)²
= 3*10^-4
I’m lost at this question, sorry but I would’ve help !
The average acceleration can be found by dividing the final speed by the time taken to reach said point so in this case you divide 60 by 8 resulting in 7.5 which will be your answer