Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.
Answer:
See below ~
Explanation:
Part (a) :
We can say a body is in uniform acceleration if the acceleration of the object remains constant with respect to time throughout its motion.
Part (b) :
We can say a body is non-uniform acceleration if the acceleration of the body varies with respect to time throughout its motion.
Answer:
Work done = 4584.9 J
Explanation:
given: q1=3.0 mC = 3.0 × 10⁻³ C, r = 20 cm = 0.20 m, q1 = 34μC = 34 × 10⁻⁶ C
Solution:
Formula for the potential difference at the center of the circle
P.E = K × q1 q2 /r (Coulomb's constant k= 8.99 × 10⁹ N·m² / C²)
P.E = 8.99 × 10⁹ N·m² / C² × 3.0 × 10⁻³ C × 34 × 10⁻⁶ C / 0.20 m
P.E = 4584.9 J = Work done
Monsoon is a blah blah hahahahah adding for someone
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not, say, 12 e, or −3.8 e, etc.