3/5=6/10 so Naomi got 138.
Luke got 69.
And Natalie got 23.
Answer: i'd rather stay single. none of yall loyal like you say. i only chase the bag.
Step-by-step explanation:
The point
is on the graph of the equation.
Explanation:
The equation is 
We need to determine the point
is on the graph.
To determine the point
is on the graph, we need to substitute the point in the equation and find whether the LHS is equal to RHS.
Thus, substituting the point
in the equation
, we get,

Multiplying the terms within the bracket, we have,

Adding the LHS, we have,

Thus, both sides of the equation are equal.
Hence, the point
is on the graph of the equation 
Change 4.2 kilometers to meters, which is 4200 meters, then add that to 325, so 4525 :)
Answer:
The probability is 
Step-by-step explanation:
We can divide the amount of favourable cases by the total amount of cases.
The total amount of cases is the total amount of ways to put 8 rooks on a chessboard. Since a chessboard has 64 squares, this number is the combinatorial number of 64 with 8,
For a favourable case, you need one rook on each column, and for each column the correspondent rook should be in a diferent row than the rest of the rooks. A favourable case can be represented by a bijective function
with A = {1,2,3,4,5,6,7,8}. f(i) = j represents that the rook located in the column i is located in the row j.
Thus, the total of favourable cases is equal to the total amount of bijective functions between a set of 8 elements. This amount is 8!, because we have 8 possibilities for the first column, 7 for the second one, 6 on the third one, and so on.
We can conclude that the probability for 8 rooks not being able to capture themselves is
