Your answer should be “C.”
MARK ME BRAINLIEST PLEASE!!!!!!
Answer:
D, E and F
Explanation:
About tetrachloro cobalt complexes, the following facts have been observed
- Color of the tetrachloro cobalt complexes is blue.
- They do not decompose on heating that means synthesis of tetra chloro is endothermic.
About hexa aqua cobalt complexes, the following facts have been observed
- Color of the hexa aqua cobalt complexes is pink color.
- They decompose on heating and remain stable on cooling that means process of synthesis of hexa aqua cobalt complexes is exothermic.
Based on above, the correct statements are:
The correct is chloro cobalt complex is blue and aqua cobalt
complex is pink.
The chloro complex is favored by heating.
If the chloro complex is a product, then the reaction must be endothermic.
The correct options are D, E and F.
Answer:
1.12M
Explanation:
Given parameters:
Volume of solution = 2.5L
Mass of Calcium phosphate = 600g
Unknown:
Concentration = ?
Solution:
Concentration is the number of moles of solute in a particular solution.
Now, we find the number of moles of the calcium phosphate from the given mass;
Formula of calcium phosphate = Ca₃PO₄
molar mass = 3(40) + 31 + 4(16) = 215g/mol
Number of moles of Ca₃PO₄ =
= 2.79moles
Now;
Concentration =
Concentration =
= 1.12M
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
Well when a particle of air is becomes heated it rises, right? So you could write some like you started off close to the earth (aka the troposphere) until you became heated then you started to rise and as you reached higher elevations you cooled down and you were recycled into cool air and you moved back down and became new fresh cool air until the next time you'll become heated and rise again to be recycled into fresh cool new air.