The answer to this question would be: resistance
When a patient developing a resistance to a certain drug, the same amount of doses will not exert the same effect as before. The effect will be lower, thus the doctor will need to increase the dose to increase the effect
"<span>b. God had created a mechanistic universe that could only be understood through the Bible" is the best option since Deists believe God treats the universe in a "hands off" way. </span>

The Balanced equation will be :

The Coefficients are :
_____________________________

Answer:
Q = 5555.6J
Explanation:
Mass of glass piece, m = 453g
initial temperature = 25.7°C
temperature to be attained = 40.3°C
⇒change in temperature, Δt = 40.3 - 25.7 = 14.6°C
specific heat of glass, s = 0.840J/g°C
Heat absorbed, Q = msΔt
⇒Q = 453×0.840×14.6 = 5555.592J
⇒<u>Q = 5555.6J</u> (rounded to the nearest tenth)
Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>