6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
Option B = 60,600 mg (correct option)
Explanation:
First of all we will have an idea which numbers are consider as significant.
1 = All non-zero digits are consider significant figures like 1, 2, 3, 4, 5, 6, 7, 8, 9.
2= Leading zeros are not consider as a significant figures. e.g. 0.02 in this number only one significant figure present which is 2.
3= Zero between the non zero digits are consider significant like 105 consist of three significant figures.
4= The zeros at the right side e.g 3400 are also significant. There are four significant figures are present.
In given options, Option A 60.6 mg have 3 significant figures.
Option B have 5 significant figures.
Option C have 4 significant figures.
Option D have 3 significant figures.
Thus option b is correct option which have more significant figures.
Answer:
uses of photosynthesies:
Explanation:
In photosynthesis ENERGY from light is used to convert CARBONDIOXDE and water into glucose and oxygen for 6 carbon and 6 water molecules, 1 glucosed and 6 oxygen molecules are produced.