Answer:
, assuming that the gravitational field strength is
.
Explanation:
Notice that both the speed and the direction of motion of this block are constant. In other words, the velocity of this block is constant.
By Newton's Second Law, the net force on this block would be
. External forces on this block should be balanced. Thus, the magnitude of the (downward) weight of this block should be equal to the magnitude of the (upward) force that the boy applies on this block.
Let
denote the mass of this block. It is given that
. The weight of this block would be:
.
Hence, the force that the boy applies on this block would be upward with a magnitude of
.
The mechanical work that a force did is equal to the product of:
- the magnitude of the force, and
- the displacement of the object in the direction of the force.
The displacement of this block (upward by
) is in the same direction as the (upward) force that this boy had applied. Thus, the work that this boy had done would be the product of:
- the magnitude of the force that this boy exerted,
, and - the displacement of this block in the direction,
.
.
Im not 100% sure you have to tell me if im wrong or not.
D
B
C
Cooking and Serving. Cook raw shell eggs that are broken for immediate preparation and service to heat all parts of the food to a temperature of 63°C<span> (</span>145°F<span>) for 15 seconds</span>
Answer:
The required new pressure is 775 mm hg.
Explanation:
We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.
We have to find the required new pressure.
Let the required new pressure be '
'.
As we know that Boyle's law formula states that;

where,
= original pressure of gas in the container = 310 mm hg
= required new pressure
= volume of gas in the container = 185 ml
= desired new volume of the gas = 74 ml
So,
= 775 mm hg
Hence, the required new pressure is 775 mm hg.
When a small cart collide with a large mass then during collision they must be in contact with each other for some interval of time
During this contact interval we can say they will exert normal force on each other
This normal force is always equal and opposite on two balls which means this force will follow Newton's III law
It will be same in magnitude but opposite in the direction
So here correct answer would be
<u><em>They both experience the same magnitude of the collision force.</em></u>