Answer:
1176 Nm or J
Explanation:
W = F*d
F = 60kg * 9.8 kgm/s^2 = 588 N
W = 588 N * 2m = 1176 N*m
Answer:
A. Speed is a scalar quantity and velocity is a vector quantity.
Explanation:
A scalar quantity is one that consists of only a numerical value.
Speed is a scalar quantity because only the instantaneous value is indicated, for example the speedometer of a car that tells you your speed at the moment but not where you are going or in what direction are you going.
On the other hand, velocity is a vector quantity. Because it is composed of a <u>magnitude and a direction</u>, for example 10m/s to the south is a velocity, and 10m/s is a speed.
Wave speed = (wavelength) x (frequency)
Wave speed = (3 m) x (15 Hz)
<em>Wave speed = 45 m/s</em>
Answer:
b) 338 N
Explanation: let m be the mass of the gymnast and a be the acceleration of the gymnast.
the force required to accelerate the gymnast is given by:
F = m×a
= (45.0)×(7.50)
= 337.5 N
Therefore, the force a trampoline has to apply is 138 N.
Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration