Answer:
12.56 A.
Explanation:
The magnetic field of a conductor carrying current is give as
H = I/2πr ............................... Equation 1
Where H = Magnetic Field, I = current, r = distance, and π = pie
Making I the subject of the equation,
I = 2πrH............... Equation 2
Given: H = 1 T, r = 2 m.
Constant: π = 3.14
Substitute into equation 2
I = 2×3.14×2×1
I = 12.56 A.
Hence, the magnetic field = 12.56 A.
Answer:
The distance traveled!
Explanation:
This is a velocity time graph of an object moving in a straight line due North.
Answer
given,
mass of the rod = 1.50 Kg
length of rod = 0.85 m
rotational velocity = 5060 rev/min
now calculating the rotational inertia of the system.
where L is the length of road, we will take whole length of rod because mass is at the end of it.
I = 1.084 kg.m²
hence, the rotational inertia the system is equal to I = 1.084 kg.m²
Answer:
Hari didn't plan to go abroad
Explanation:
Abroad planned to go to hari.
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec