Answer: 9.7 days
Explanation:
Applying Kepler's 3rd law, we can write the following proportion:
(Tm)² / (dem)³ = (Tsat)² / (dem/2)³
(As the satellite is placed in an orbit halfway between Erth's center and the moon's orbit).
Simplifyng common terms, and solving for Tsat, we have:
Tsat = √((27.3)²/8) = 9.7 days
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'
A) Agreed.
<span>b) Value agreed but units should be W (watts). </span>
<span>c) Here's one method... </span>
<span>15 miles = 24140 m </span>
<span>1 gallon of gasoline contains 1.4×10⁸ J. </span>
<span>So moving a distance of 24140m requires gasoline containing 1.4×10⁸ J </span>
<span>Therefore moving a distance of 1m requires gasoline containing 1.4×10⁸/24140 = 5800 J </span>
<span>Overcoming rolling resitance for 1m requires (useful) work = force x distance = 1000x1 = 1000J </span>
<span>So 5800J (in the gasoline) provides 1000J (overcoming rolling resistance) of useful work for each metre moved. </span>
<span>Efficiency = useful work/total energy supplied </span>
<span>= 1000/5800 </span>
<span>= 0.17 (=17%) </span>