✿━━━━@♥ℳg━━━━✿
<h2>

</h2>
______________________________
✿━━━━@♥ℳg━━━━✿
Torque = Force X Displacement
= MLT-2 X L = [M1L2T-2]
The dimensional formula of force is MLT^-2
Answer:
W =1562.53 N
Explanation:
It is given that,
Radius of the aluminium ball, r = 24 cm = 0.24 m
The density of Aluminium, 
We need to find the thrust and the force. The mass of the liquid displaced is given by :

V is volume
Weight of the displaced liquid
W = mg

So,

So, the thrust and the force is 1562.53 N.
Answer:
Explanation:
a )
Time to reach the speed of 20 m/s with an acceleration of 2 m/s² can be calculated as follows .
v = u + a t
20 = 0 + 2 t
t = 20 /2 = 10 s .
Total time = 10 s + 20 s + 5 s = 35 s .
b) Average velocity = Total distance travelled / total time
Distance travelled in first 10 s
S₁ = ut + 1/2 a t²
= 0 + .5 x 2 x 10²
= 100 m
Distance travelled in next 20 s
S₂= 20s x 20 m/s = 400 m
Distance travelled in last 5 s .
deceleration in last 5 s
v = u + at
0 = 20 m/s + a x 5
a = - 4 m/s²
v² = u² - 2 a s
0 = (20 m/s)² - 2 x 4 m/s² x s
s = 50 m
S₃ = 50 m
Total distance = S₁ + S₂ + S₃
= 100 m + 400 m + 50 m
= 550 m .
Average velocity = 550 m / 35 s
= 15.71 m /s .
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse:
Answer:
12 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 7.6 kg
Distance (d) = 6 m
Velocity (v) = 5 m/s
Force (F) = 2 N
Workdone (Wd) =.?
Workdone can be defined as the product of force and distance moved in the direction of the force. Mathematically, it is expressed as:
Workdone = Force × distance
Wd = F × d
With the above formula, we can obtain the workdone as follow:
Distance (d) = 6 m
Force (F) = 2 N
Workdone (Wd) =.?
Wd = F × d
Wd = 2 × 6
Wd = 12 J
Thus, the workdone is 12 J