1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
3 years ago
10

If the gas inside the flask in the above exercise is cooled so that its pressure is reduced to a value of 715.7 torr, what will

be the height of the mercury in the open ended arm? (Hint: The sum of the heights in both arms must remain constant regardless of the change in pressure.) (a) 49.0 mm, (b) 95.6 mm, (c) 144.6 mm, (d) 120.1 mm.
Physics
1 answer:
evablogger [386]3 years ago
4 0

Answer:

(a) 49.0 mm

Explanation:

#First we need to calculate the height of the mercury arm:

Reduced pressure is 715.7torr, Initial Pressure is 797.3torr, Required pressure is:

P_g_a_s=P_a_t_m+P_h\\  

The difference in the two arms will give the pressure difference between the gas placed in the flask attached to an open-end mercury manometer.

P_g_a_s=P_a_t_m+P_h\\797.3=P_a_t_m+(136.4mm-103.8mm)\\P_a_t_m=764.7mm\\\\h_t_o_t_a_l=136.4mm+103.8mm=240.2mm\\\\P_g_a_s=P_a_t_m+\bigtriangleup h\\\bigtriangleup h=P_g_a_s-P_a_t_m\\\\\bigtriangleup h=715.7mm-764.7mm\\=-49mm

Hence the height of the mercury in the arm is 49.00mm

You might be interested in
A block is pulled across a flat surface at a constant speed using a force of 50 newtons at an angle of 60 degrees above the hori
vladimir2022 [97]

The magnitude of the friction force is 25 N

Explanation:

To solve this problem, we just have to analyze the forces acting on the block along the horizontal direction. We have:

  • The horizontal component of the pulling force, F cos \theta, where F = 50 N is the magnitude and \theta=60^{\circ} is the angle between the direction of the force and the horizontal; this force acts in the  forward direction
  • The force of friction, F_f, acting in the backward direction

According to Newton's second law, the net force acting on the block in the horizontal direction must be equal to the product between the mass of the block and its acceleration:

\sum F_x = ma_x

where

m is the mass of the block

a_x is the horizontal acceleration

However, the block is moving at constant speed, so the acceleration is zero:

a_x = 0

So the equation becomes

\sum F_x = 0 (1)

The net force here is given by

\sum F_x = F cos \theta - F_f (2)

And so, by combining (1) and (2), we find the magnitude of the friction force:

F cos \theta - F_f = 0\\F_f = F cos \theta = (50)(cos 60^{\circ})=25 N

Learn more about  force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

4 0
2 years ago
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second
MissTica

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

5 0
1 year ago
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have st
irina [24]

Complete Question:

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, 31 {\rm {N}/{mm}}. What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answer:

\triangle E = 12.79 J

Explanation:

Sprinters' tendons stretch, x_s = 43 mm = 0.043 m

Non athletes' stretch, x_n = 32 mm = 0.032 m

Spring constant for the two groups, k = 31 N/mm = 3100 N/m

Maximum Energy stored in the sprinter, E_s = 0.5kx_s^2

Maximum energy stored in the non athletes, E_m = 0.5kx_n^2

Difference in maximum stored energy between the sprinters and the non-athlethes:

\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J

4 0
3 years ago
Identify three specific situations in which machines make work easier.
Komok [63]
Construction, like building a home/building, digging, like in a mine, and opening a soda can, where the part to open is a lever.
5 0
3 years ago
Motivational novels for students
wolverine [178]

i recommend Biography of Malala Yousafzai

I have learned her biography

that really motivated me

4 0
3 years ago
Other questions:
  • Scientific work is currently underway to determine whether weak oscillating magnetic fields can affect human health. For example
    10·1 answer
  • two Sound Waves Traveling In The Same Medium Interfere With Each Other. The Compression Of One Wave Falls On The Compression Of
    13·2 answers
  • Please help me with these 3 questions!!
    6·1 answer
  • At which point or points does the pendulum have the greatest kinetic energy?
    10·2 answers
  • What contains ribbon-like layers<br> A. Igneous <br> B. Sedimentary <br> C. Metamorphic
    10·1 answer
  • An ideal monatomic gas at 275 K expands adiabatically and reversibly to six times its volume. What is its final temperature (in
    10·1 answer
  • Ibrahim is experimenting with his circuits. He made a circuit using a 12V battery and 6.5 ohm resistor. But then he realized he
    7·2 answers
  • Which options lists a form of kinetic energy followed by a form of potential
    14·1 answer
  • A student wants to draw a model of an atom. Which statement describes how to find the number of neutrons to include in the model
    9·1 answer
  • the volume of a water tank is 5m×4m×2m. If the tank is half filled with water. calculate the pressure exerted at the bottom of t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!