Answer:
<h3>
R(-1, -9)</h3>
Step-by-step explanation:
When we reflect over x-axis then the x-coordinate doesn't change and the y-coordinate changes its sign
in means if R = (x, y) then R' = (x, -y)
so we have:
x = -1 and -y = 9
y = -9
which gives R = (-1, -9)
Step-by-step explanation:
You need to know some geometry rules.
For example:
Angle sum of a triangle is equal to 180 degrees.
Straight line is equal to 180 degrees.
Other rules I have attached.
If you have any confusion over these I will be happy to answer your questions.
Answer:
So, the volume is:

Step-by-step explanation:
We get the limits of integration:

We use the spherical coordinates and we calculate a triple integral:
![V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\int_0^4 \rho^2 \sin \varphi \, d\rho\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \left[\frac{\rho^3}{3}\right]_0^4\, d\varphi\, d\theta\\\\V=\int_0^{2\pi}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin \varphi \cdot \frac{64}{3} \, d\varphi\, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} [-\cos \varphi]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, d\theta\\\\V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\](https://tex.z-dn.net/?f=V%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%5Cint_0%5E4%20%20%5Crho%5E2%20%5Csin%20%5Cvarphi%20%5C%2C%20d%5Crho%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Cleft%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5Cright%5D_0%5E4%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%5Csin%20%5Cvarphi%20%5Ccdot%20%5Cfrac%7B64%7D%7B3%7D%20%5C%2C%20d%5Cvarphi%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5B-%5Ccos%20%5Cvarphi%5D_%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B4%7D%7D%20%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5C)
we get:
![V=\frac{64}{3} \int_0^{2\pi} \sqrt{2} \, d\theta\\\\V=\frac{64\sqrt{2}}{3}\cdot[\theta]_0^{2\pi}\\\\V=\frac{128\sqrt{2}\pi}{3}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B64%7D%7B3%7D%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Csqrt%7B2%7D%20%5C%2C%20d%5Ctheta%5C%5C%5C%5CV%3D%5Cfrac%7B64%5Csqrt%7B2%7D%7D%7B3%7D%5Ccdot%5B%5Ctheta%5D_0%5E%7B2%5Cpi%7D%5C%5C%5C%5CV%3D%5Cfrac%7B128%5Csqrt%7B2%7D%5Cpi%7D%7B3%7D)
So, the volume is:

Answer:
i a free can I have brainliest